

© P. Bellavite

Paolo Bellavite, MD, Università di Verona, Italia

© P. Bellavite

Pesquisa básica e homeopatiabasic research and homeopathy

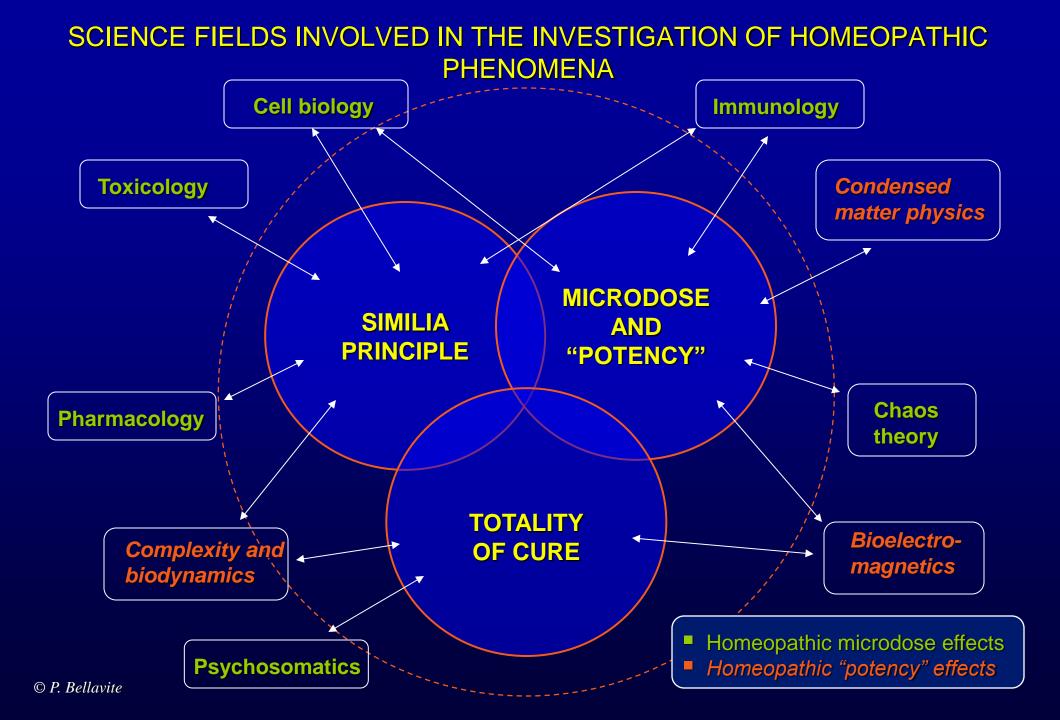
Introduction: Basic research and homeopathic principles

Part 1: Scientific reevaluation of the "similia" principle

Part 2: The problem of doses/potencies and related questions

Part 3: Working hypothesis on the action mechanism of homeopathy (> The homeopathic paradigm)

THE MAJOR TENETS OF HOMEOPATHY


"By choosing a remedy for a given natural disease that is capable of producing a very similar artificial disease we shall be able to cure the most obstinate diseases"
S. Hahnemann, Hufeland's Journal 2: 381 (1796)

SIMILIA PRINCIPLE "POTENCY" "A medicine whose selection has been accurately homoeopathic must be all the more salutary the more its dose is reduced to the degree of minuteness appropriate for a gentle remedial effect..." S. Hahnemann, The Organon of Medicine (1820), par 277

TOTALITY OF CURE

"Each individual case of disease is most surely, radically, rapidly and permanently annihilated and removed only by a medicine capable of producing (in the human system) in the most similar and complete manner the totality of its symptoms"

C.F.S. Hahnemann, The Organon of Medicine (1820), par. 27

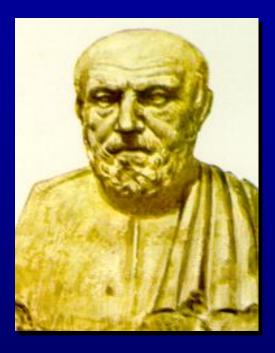
The principle of similarity, microdose-mediated homeopathic effects and totality of cure can be investigated and understood independently of the socalled "high dilution" or "high potency" effects

Historically, the Similia principle is the first "law" and the basis of the homeopathic method

Many homeopathic drugs contain significant amount of active compounds

In cellular models and in animals, the Similia principle has been widely exploited using lowdoses of drugs Pesquisa básica e homeopatiabasic research and homeopathy

Part 1: Scientific reevaluation of the "similia" principle


Similia principle (Principle of Similarity)

when a substance is able to *induce* a series of symptoms in a healthy living system it would be also able under certain circumstances to *cure* these symptoms when applied at low doses ("similia similibus curentur")

"Through the similar the disease" develops and through the employment of the similar the disease is healed. So that which produces urinary tenesmus in the healthy, cures it in disease.

Cough is provoked and healed through the same agent, just as in the case of urinary tenesmus"

Littre's Oeuvres Completes d'Hippocrates, Paris, 1839, 6, 334.

Hippocrates (460-377 B.C.) A scientific reevaluation of Similia principle = <u>"inversion of effects"</u>

 Biphasic or polyphasic dose-response effects
 Reversal of inhibition during time
 Inverse effects in systems at different physiological states

Bellavite et al., *Br.Hom.J.* 86:73-85, 1997 Bellavite et al., *Medical Hypoth.*, 49: 203-212, 1997 Bellavite et al. *Ann. Ist. Sup. Sanità* 35(4): 517-527, 1999

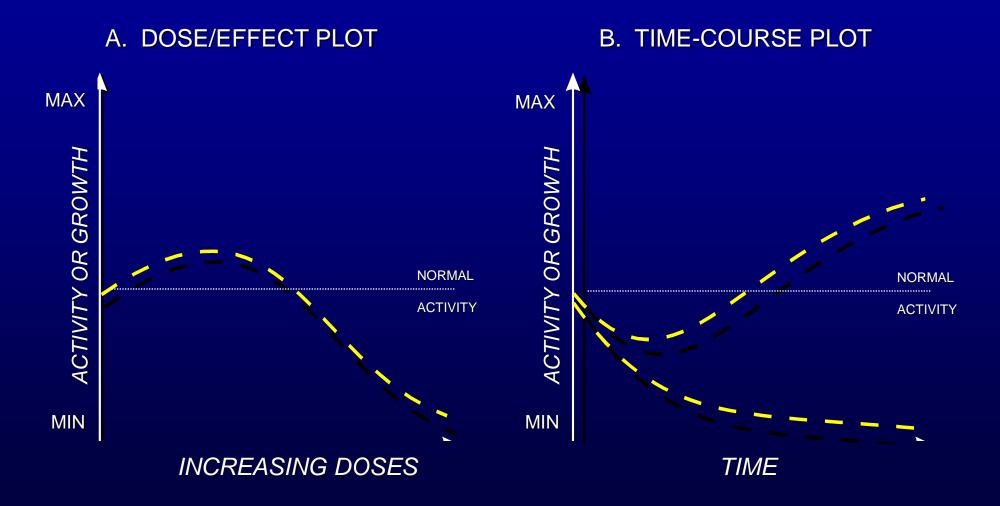
EXAMPLES OF INVERSE EFFECTS WITH HOMEOPATHIC DILUTIONS

System	Agent	Conventional effect	Inverse/homeopathic effect	Ref.
Basophils	Histamine Apis mellifica	Pro-inflammatory agents	Histamine (up to 60x) and Apis mellifica (10c)	Poitevin 1988 S.Laudy 1991 Belon 1996-99
Rat Guinea pig	Histamine Lung Histamine Apis mellifica	Pro-inflammatory agent	Histamine (30x), Lung histamine (18c) and Apis mellifica (7c/10c) reduce inflammation symptoms	Bastide 1975 Poitevin 1988 Bildet 1990 Conforti 1993
Rat Mouse	Arsenic trioxide Arsenicum album	Whole body and liver toxicity	Arsenic trioxide (7c and 17c) and Arsenicum album (30c) protect from intoxication and increase Urinary elimination	Lapp 1955 Wurmser 1955 Cazin 1987 Cazin 1991 Khuda-Bukhsh 1998-2000
Rat liver	Phosphorus	Hepatotoxicity	Phosphorus (30x) protects from toxic hepatitis	Bildet 1984 Guillemain 1987 Palmerini 1993 Gomez 1999
Tadpoles	Thyroxine	Increases the rate of metamorposis	High dilutions (30x) inhibit the metamorphosis	Endler 1991-98

MODELLING THE SIMILIA PRINCIPLE

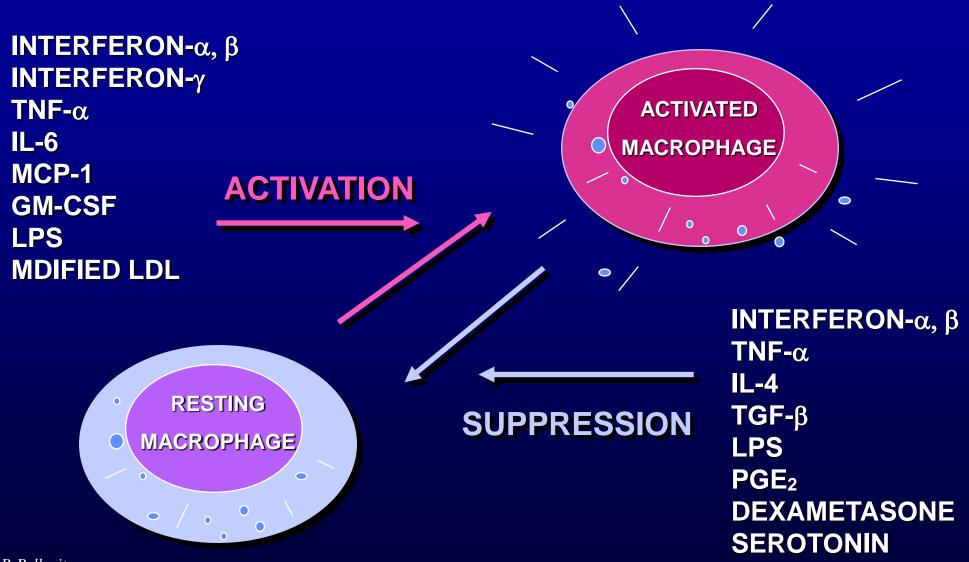
Cells

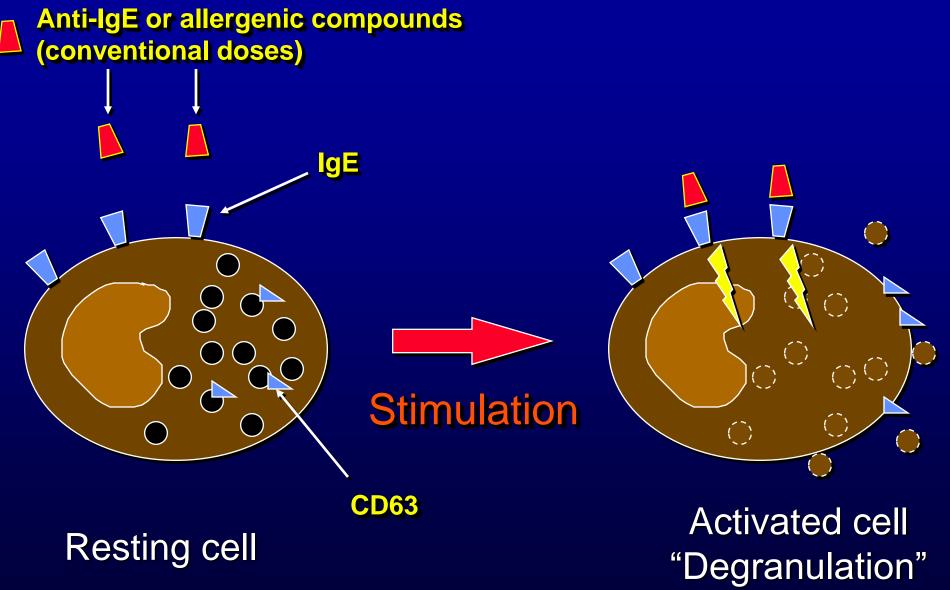
- Hormesis (stimulation of growth by low doses of toxic compounds or radiations)
- Heat shock proteins
- Gating theory (cyclic AMP)
- Whole organism
- Immune network and tolerance (animal & humans)
- Chaos and attractors
- Neuroendocrine feedback regulation
- Unifying model
- Regulation of stressed homeostatic networks
 (→ the homeopathic paradigm)


The "Arndt-Schulz law"

"Weak stimuli slightly accelerate vital activity, medium strong stimuli raise it, strong ones suppress it and very strong ones arrest it"

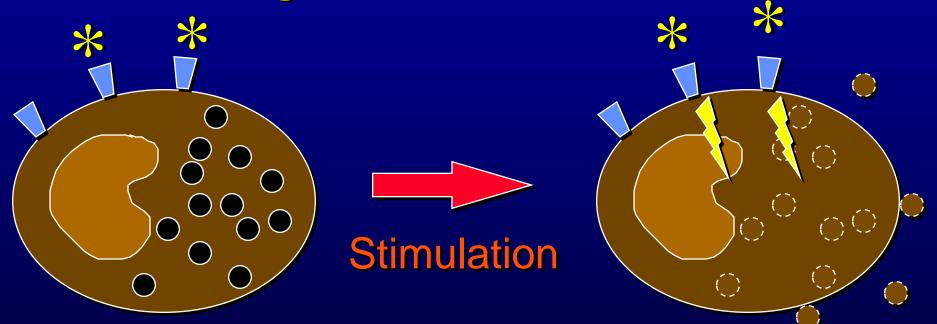
H.Schulz, *Arch fuer Physiol* 1888; 42: 517-541


"Hormetic" effects (stimulation by low doses of toxic compounds)


EXAMPLES OF INVERSE EFFECTS IN LABORATORY SYSTEMS

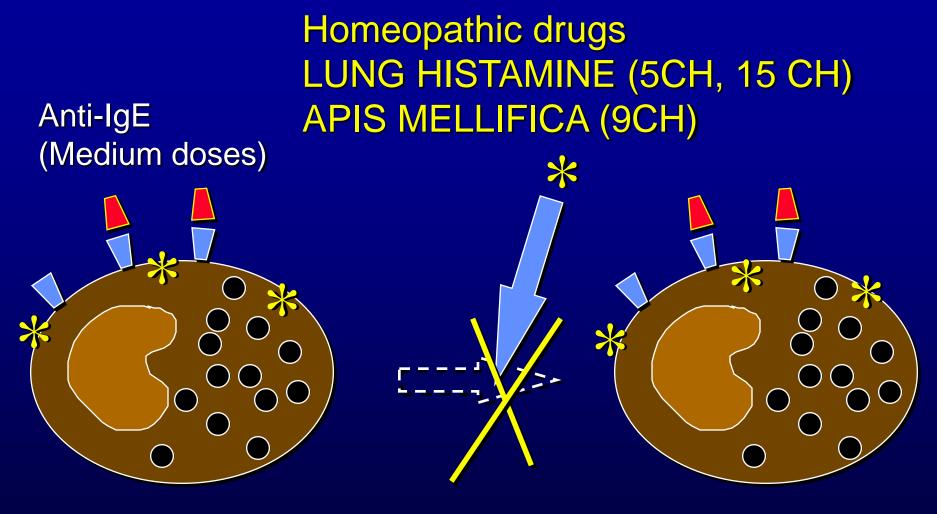
System	Agent	First effect	Inverse effect	Ref.
Yeast	Heavy Metals	Block growth	Low doses increase growth	Schulz 1988 Martius 1923 Stebbing 1982
Fibroblasts Wheat	Arsenite Cadmium	Cell toxicity	Low doses protect from toxicity or stimulate DNA synthesis	vanWijk 1995 vanWijk 1997 V.Zglinicki 1992 Betti 1997-2000
Neurons	Naloxone	Antagonizes morphine	Low doses enhance the effect of morphine	Crain 1995
Neurons	β-amyloid	Toxic for mature cells	Promotes growth of young cells	Yankner 1990
Epithelial cells Tumor cells	Oxidants	Short-term/high doses decrease viability	Long-term/low doses increase viability	Da Silva 1996 Jenkins 1995
Macrophages	Interfererons Endotoxins	Activation of resting cells	Inhibition of pre-activated cells	Adams 1992
Platelets	Diclofenac	Inhibit functions	Stimulate platelet adhesion	Andrioli- Bellavite 1997
Leukocytes	Bacterial peptides	Stimulate adherence	Low doses inhibit adherence	Bellavite 1993- 1997

INVERSE EFFECTS OF BIOLOGICAL COMPOUNDS ON MACROPHAGES (From: Inflammation, Raven Press, 1992. Gallin et al. ed.)



BASOPHIL ACTIVATION

THE FAMOUS EXPERIMENT OF BENVENISTE (DAVENAS ET AL., NATURE1988)

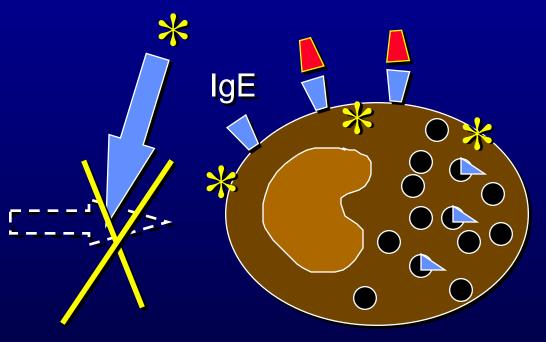

* Ultra-high dilution (up to 10⁻¹²⁰ Moles/L) of Anti-IgE

Resting cell

Activated cell

EXPERIMENTS OF POITEVIN ET AL. (BR. J. CLIN. PHARM. 1988)

Resting cell


Lack of response to Anti-IgE

EXPERIMENTS OF SAINTE LAUDY, BELON ET AL. (1989-1999)

Anti-IgE (Medium doses)

Ultra-high dilution of **Histamine**

Resting cell

Lack of response to Anti-IgE

Investigations on complex responses of neutrophils to bacterial products

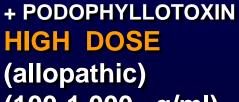
Inverse effects of different doses

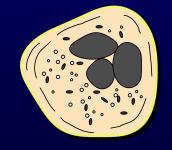
Homologous priming and desensitization

Hormesis

is a special application of the similia principle at the biological and physiopathological level, but it does not represent "the" explanation of homeopathic effects, which may have further and more complex implications at the level of whole human organism.

© P. Bellavite

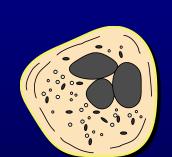

HIGH DOSE (allopathic) (100-1,000 μg/ml)

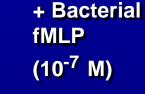

+ PODOPHYLLUM

LOW DOSE

(0.1-1 µg/ml)

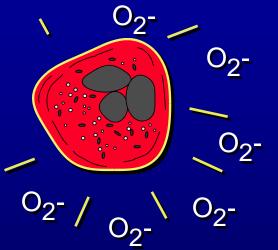
(homeopathic)



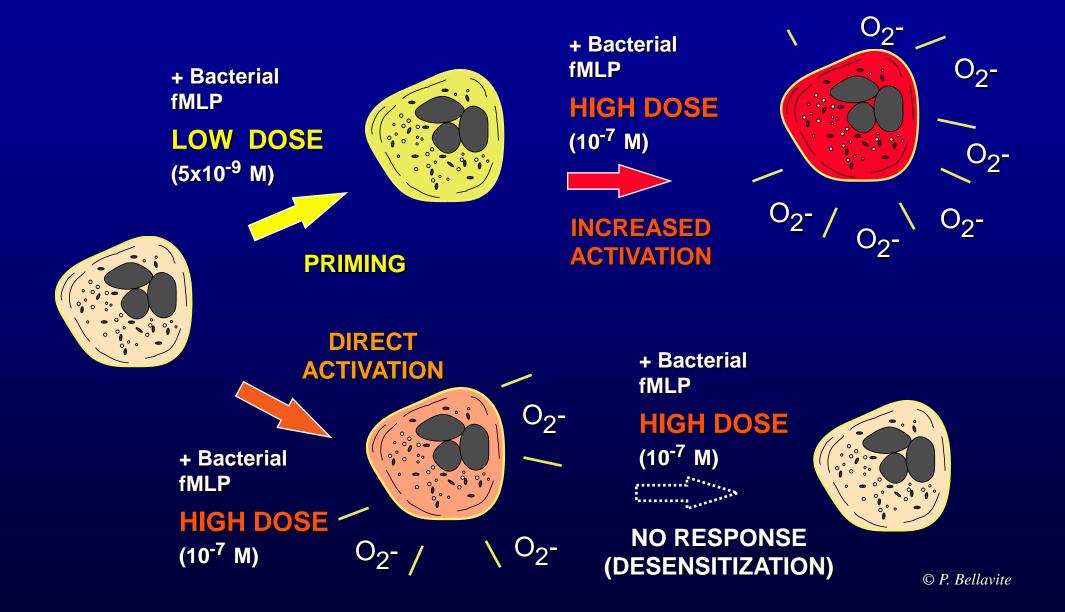

NO RESPONSE (INACTIVATION)

+ Bacterial **fMLP** (10⁻⁷ M)

PRIMING

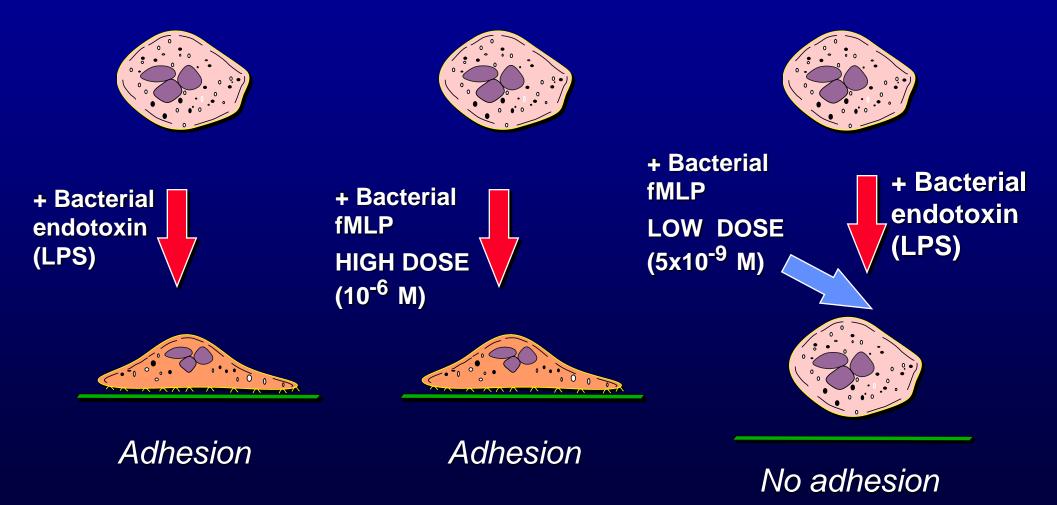


Dual effects of podophyllum on human neutrophils

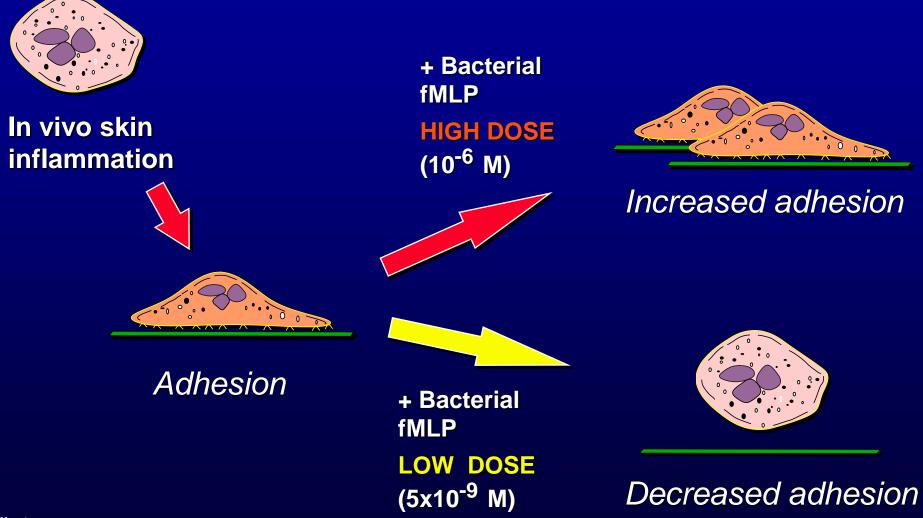

(Data from Chrumbolo and Bellavite, Brit. Hom. J. 86: 16-26, 1997)

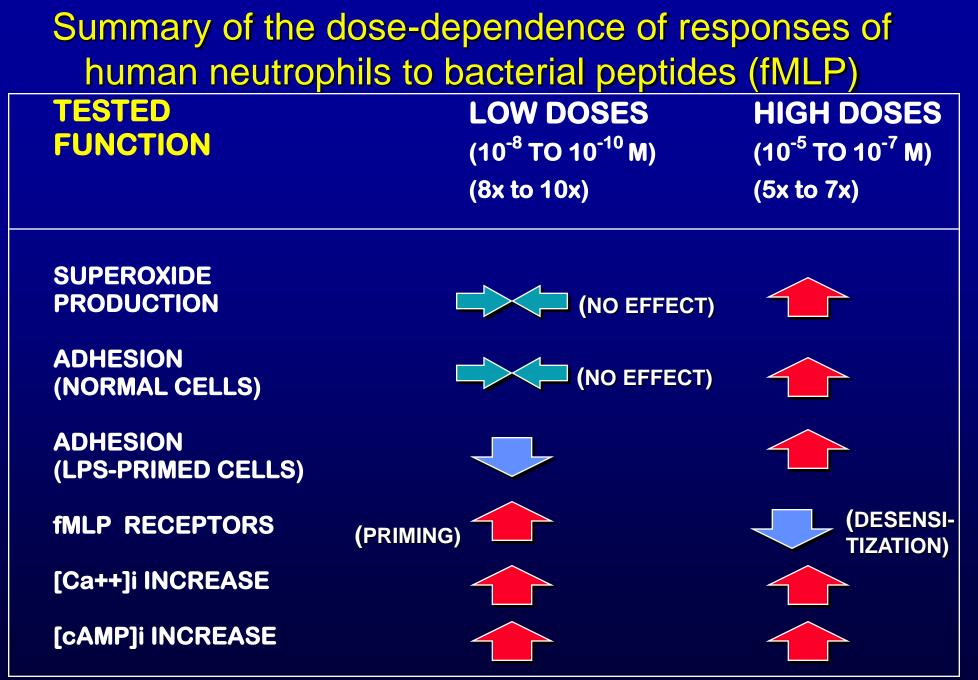
INCREASED ACTIVATION

Priming and desensitization of human neutrophils (Data from Bellavite et al., *Cell Biochem. Funct.* 11: 93, 1993)


Priming

is a state of hyperactivation in response to a given stimulant, which characterizes a cell or a system after it has received pretreatment with low doses of the same stimulant (homologous priming) or of other stimulants of a different type (heterologous priming)


Desensitization


is a state characterized by lack of responsiveness to a given stimulus after the cell or the organism have received pretreatment with the same stimulant (homologous desensitization) or with different stimulants (heterologous desensitization)

A typical example of inverse effects of different doses of a stimulant (FMLP) on the adhesion of human neutrophils (Data from Bellavite et al., *Cell Biochem. Funct.* 11: 231, 1993)

Inverse effects of different doses of fMLP on the adhesion of inflammatory human neutrophils (Data from Bellavite et al., *Inflammation.* 18: 575, 1994)

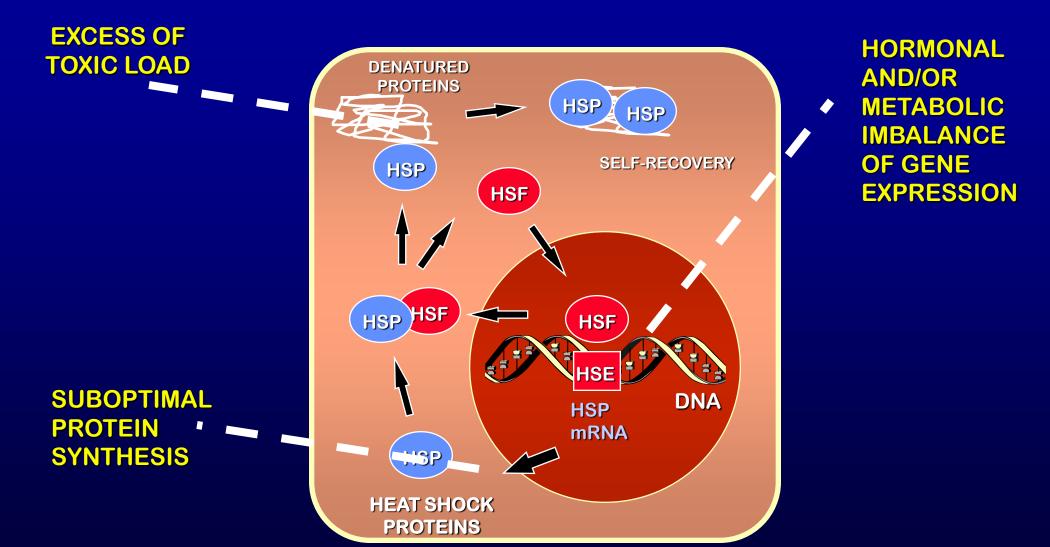
Specificity of the inhibition of adhesion by FMLP in human neutrophils pre-treated with various agents				
PRE-TREATMENT	STIMULANT (low doses)	EFFECTS of ST ADHESION	TIMULANT <u>cAMP</u>	
LPS	FMLP			
LPS	Concanavalin A		NO EFFECT	
LPS	Phorbol esters		NO EFFECT	
TNF-α	FMLP			
Inflammation	FMLP			
Inflammation	Concanavalin A		NO EFFECT	

© P. Bellavite

The complexity of *in vitro* regulation of human neutrophils (summary)

- Neutrophils exposed to LOW doses of fMLP are primed to further stimuli, while neutrophils exposed to HIGH doses are desensitized
- Adhesion of NORMAL neutropils is activated by high doses of fMLP, while adhesion of LPS-TREATED neutrophils is inhibited by low doses of fMLP
- Inverse effects can be observed in several (but not all) models, thus the experimental conditions (doses, type of stimulant, cell treatment, cell function) must be carefully set

POSSIBLE MODELS EXPLAINING INVERSE EFFECTS (= SIMILIA PRINCIPLE) AT A CELLULAR LEVEL


Detoxification enzymes (gene induction and activation)

Heat shock proteins (stress proteins, chaperonins)

Various receptors (different affinity and different coupling with effectors)

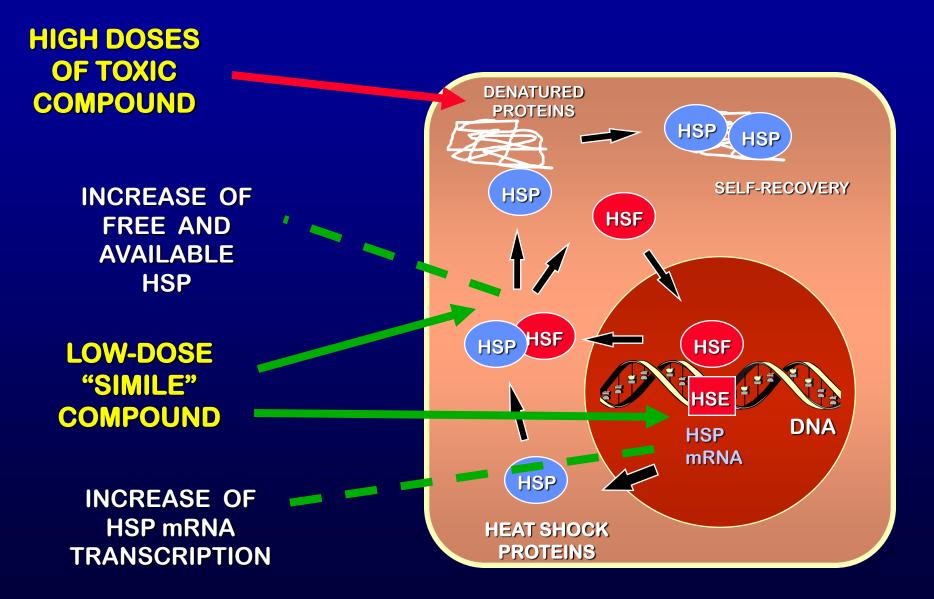
Gating theory (signal transduction)

SUBOPTIMAL CELLULAR STRESS RESPONSE

© P. Bellavite

HEAT-SHOCK PROTEINS AND HOMEOPATHY R. Van Wijk and F.A.C. Wiegant (1995-1998)

"Such a condition of the cell, in which the reaction to the threat is not optimal, may be considered pathological. The cell could then be considered a "sick system" with the damage insufficiently compensated"


"Here the question is whether compensation can be increased and whether the development of resistance can be stimulated, and if so, how"

HEAT-SHOCK PROTEINS AND HOMEOPATHY R. Van Wijk and F.A.C. Wiegant (1995-1998)

"Self-recovery will be stimulated with a smaller dose of the substance responsible for disturbing the system in the first place"

"Self-recovery is defined on the cellular level as supplementing the arsenal of protective proteins, stimulating resistance for the disturbing agent and temporarily stimulating proliferation in compensation for cell death"

HYPOTHETICAL MODEL OF THE REGULATION OF CELLULAR STRESS RESPONSE BY LOW DOSES OF TOXIC COMPOUNDS

© P. Bellavite

THERAPEUTIC APPLICATIONS OF HEAT SHOCK PROTEINS

S.M. Edginton Bio/TECHNOLOGY VOL. 13, DECEMBER 1995, p. 1442-1444

- Immune modulation
- Cancer therapy
- Vaccines and Adjuvants
- Heart attack and stroke

EXAMPLES OF INVERSE EFFECTS IN ANIMAL SYSTEMS

System	Agent	First effect	Inverse effect	Ref.
Rat blood	Acetylsalycilic acid	Inhibit platelet aggregation	Very-low doses have thrombogenic activity	Doutremepuich 1994
Dog heart	Ischemia	Causes infarction	Ischemic preconditioning protects from infarction	Cohen 1996
Mouse prostate	Estrogens	Inhibit growth	Low doses promote growth	VomSaal 1997 Gupta 2000
Mouse and rat immune system	Protein antigens	Induce autoimmune disease	Oral administration protects and cure autoimmunity	Miller 1992 Weiner 1997 Wu 1998
Rat arthritis	Naloxone	Hyperalgesia	Low doses have antinociceptive effects	Kayser 1988
Rat liver	Carbon tetrachloride	Toxicity	Low doses protect from liver toxicity	Ugazio 1972 Mehendale 1991 Pound 1993
Rat immune system	Killed mycobacteria	Induce arthritis	Intraperitoneal low- doses cure arthritis	Conforti-Bellavite 1995-2000

TREATMENT OF ORGAN-SPECIFIC AUTOIMMUNE DISEASES IN ANIMALS USING THE "SIMILE" SUBSTANCE

DISEASE	ADMINISTERED COMPOUND
Experimental allergic encephalomyelitis (Lewis rat, guinea pig)	Myelin basic protein Oral: 3-10 mg (no effect with 50 mg) Aerosol: 0.005-5 mg
Collagen-induced arthritis Adjuvant-induced arthritis BSA-induced arthritis (Lewis rat)	Collagen type II and type I Oral: 0.003 mg (no effect with 0.3 mg)
Spontaneous autoimmune diabetes (Mouse)	Insulin Oral: 1 mg (no effect with 5 mg)
Experimental autoimmune myastenia gravis (Lewis rat)	Acethylcholine receptor Oral: 20 mg

Adapted from Weiner et al., Annu. Rev. Immunol. 1994; 12: 809-837. The daily intake indicated

ANIMAL MODELS OF INVERSION OF EFFECTS (Verona group)

Effects of high dilutions of histamin and other natural compounds on acute inflammation in rats

Conforti, A., Signorini, A. and Bellavite, P. (1993) In: Omeomed92 (C. Bornoroni ed.). Editrice Compositori, Bologna. pp 163-169.

Intraperitoneal administration of adjuvant inhibits the development of adjuvant arthritis in rats

Conforti, A., Lussignoli, S., Bertani, S., Ortolani, R., Verlato, G. and Bellavite, P. (1995). Int. J. Immunopathol. Pharmacol. 8 (2): 113-121.

Specific and long-lasting suppression of rat adjuvant arthritis by intraperitoneal low-dose of Mycobacterium butiricum.

Conforti A., Lussignoli, S., Bertani, S., Verlato, G., Ortolani, R., Bellavite, P. and Andrighetto, G. (1997) Eur. J. Pharmacol. 324: 241-247.

Suppression of adjuvant arthritis in rats by intraperitoneal Mycobacterium butyricum

Conforti, A, Lussignoli, S., Bertani, S., Ortolani, R., Brendolan, A., Cestari, T., Andrighetto, G. and Bellavite, P. (1998). *J. Chemother.* 10: 169-172

Dual effects of a homeopathic mineral complex on carrageenan-induced oedema in rats

Bertani, S., Lussignoli, S., Andrioli, G., Bellavite, P. and Conforti, A. (1999) Br. Hom. J. 88: 101-105

EXAMPLES OF INVERSE EFFECTS IN HUMANS

Condition	Agent	First effect	Inverse effect	Ref.
Respiratory allergy	Allergens	Cause allergy	Very low doses reduce allergy symptoms (also high dilutions 30c)	Black 1927 Scadding 1986 Malling 1998 Reilly 1987-2000
Bleeding	Acetylsalycilic acid	Increase bleeding time	Very low doses (5c=0.000000001 mg) decrease bleeding time	Doutremepuich 1987-1998
Respiratory disease	Nitric oxide	Toxic inhalant for airways (pollutant)	Inhaled low doses cure airways obstruction	Quinn 1993 Kinsella 1999
Cardiovascular disease	Alchohol Digitalis	High doses are toxic	Low doses protect and cure	Friedman 1986 Davis 1990 Goodman 1990
Rheumatoid arthritis	Collagen	Autoantigen	Oral very low doses cure the disease (in some subjects)	Trentham 1993 Weiner 1997
Cancer	Ionizing radiations	Cancerogenic	Epidemiological evidence of protection by low doses	Goldman 1996
Nervous system	Tryciclic antidepressants	Mood elevation in depressed patients	Sleepiness, low blood pressure, dysphoria	Goodman 1990

Reviews: Bellavite/Signorini 1995; Eskinazi 1999

EXAMPLES OF MODERN SCIENTIFIC THERAPIES IN AGREEMENT WITH THE PRINCIPLE OF SIMILARITY

- Cytokine therapy in the immunocompromised host
- Endotoxins as immunostimulants
- > Treatment of immune disorders with immunoglobulins
- Nitric oxide in respiratory diseases
- > Oral myelin in multiple sclerosis
- > Oral collagen in rheumatoid arthritis
- Bacterial extracts in recurrent bronchitis
- > Nasal allergens in allergic diseases
- Cancer vaccines made with tumour antigens or cells

SUMMARY OF EXPERIMENTAL EVIDENCE OF "SIMILIA PRINCIPLE"/INVERSION OF EFFECTS

Stimulation or protection by low doses of toxic compounds (typical hormesis effect) on cell and animal models

Inhibition of specific cellular activities by low doses of stimulating compounds

Inhibition or protection of autoimmunity by low doses of antigen

- Paradoxical effects of drugs
- Therapeutic effects of low doses/high dilutions of toxic compounds in humans (classical homeopathy)