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ABSTRACT

The main features of ihe Ieukocyte oxidase system which is
responsible for the producii-on of oxygen-de;ived free radicals are
briefly reviewed. 0ne of the most imporì:ant components of NADpH
oxidase is the 1ow potential cyiochrome b. Here some additional
evidence in favour of its proposed participation io superoxide
formation by neut;ophils and macrophages are reporied: Cytochrome
b co-pur.i.fies wiih enzymatic acti.vity, in cells activated in
anaerobiosls it is reduced in parallel wiih the expression of the
oxidase on the membrane and a protein of 32 kDa belonging to
cytochrome b is phosphorylated in pMA- and zymosan-siimulated
neutrophils. Antibodies raised against the 32 kDa protein bind to
a protein which is restricted 1n i-ts expression to phagocy.iic
ceIls.
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iNTRODUCTION

The phagocy-lies have a peculia: oxidaiive meì:abolic pa,thway, called
respiratory burst, which consis.ùs in a rapid increase of oxygen
consumption, trigger-ed when the cells are engaged in phagocytosis
or aci;iva-ted by soluble agen cs. By this pa'thway ,the molecular
oxygen is converted into superoxide anion (O, ) and .irhen in-Lo
hydrogen peroxide (H^0^) and hvdroxvf radicai (OH') according to
rhe fol Lowing ".." it 3.3 

'

NADPH + 20- ---+ NADP+ + 20 + H2 --2 (1)
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The primary reac-iion is ihe one*elec tron reduc'.ion of oxygen to
superoxide and 1s catalysed by an enzyme, or enzyma-bic sysJem
called NADPH oxidase. The two other reactions are the dismutati-on
of superoxide (n.2) which occurs sponianeously or ius caialysed by
supeÌ oxide dismu-iase, and the Haber-Weiss reaction (n. 3 ) which is
catalysed by meials such as iron. The mos-t powerful compound is
'the hydroxyl :adical but the quan'ti'cative relevance of reactjon 3

is no-b well es tablished. Produc'tion of all these derivatives of
oxygen reduc-tion by phagocytes and by subcellufar par-Licles or
pailbially purlfied sysì:ems f:om activa-l:ed cells has been widely

documenied (Babior_e-i:_a)., 1-9731 Badwey and Karnowsky, 1980;
Kakinuma and Kaneda, 198O; Rossi ei_q!, 1982; Bannister ei_al,
1982). ti is known thar: oxygen free radicals are j,nvolved in-bhe
an-iibacterial and an Li-iumor func-tion of granu.locy-ies and
maciophages, as well as in the tissue damage of'the inflammatory
reactions (Johns':on 9!_91, 1975; Klebanoff and Clark, 1978;
lvlurray e; a1, 1979; Fantone and Ward, 1982; Nathan, 1982).

In the presen'; papelthe s'truc'tu'e and properties of NADPH oxidase
(reaction 1) will be considered on 'rhe basis of recent findings
from our and o-ther laboratories.

PROPERTIES OF THE O -GENERATiNG SYSTEM OF THE I"lEMBRANES.

The:'ole of NADPH oxidation in the phagocyte metabolism was
firsily described by Rossi and Za-t'ii (1964). The enzyme
responsible folthe NADPH oxidaiion and O^ fo|maiion has not ie't
fu1ly cha.acrerrzed buii a series of;.nforfraiions regarding iis
proper-bies has been accumuf a'ùed in the pas-; yeai's. The main
f ea-,:u:es of NADPH oxidase a:e: 1) I'i uses NADPH as physiologic
subs-tra'iie and no'; NADH, and genera-;es 2 mol of O^ f or 1 mol- of

2
NADPH oxidized.2) iis activity accounts for aIl oxygen netabolism
during the resplra'tory burst. while mitochondriaf oxygen
consump-iion is not signj.fican';1y affected by ce11 ac-tiva-tion.3)
-it is dormant in uns-timula ired ce11s and is 'turned on when the cells
are engaged in phagocycosis or come in coni;aci with soluble agen-ts
such as concanavalin A, formyla'ied pep'Jides, phorbol myrisiaie
ace;a-te ( PItlA ), complemen't fragments , immunocomplexes ,

cy';ochalasins, etc. 4) Ii works on ihe plasmamemb:rane as an
elecrron transport system from NADPH (inside) to oxygen ihat is
;eleased as 0_ ouiside 'the cel-l or in 'the phagocy-tic vacuole,

2
During phagocy'iosrs only 'ihe enzyme in con'tact wi ih 'the lnges'ted
par.ticle is selec-tively aciivaced. 5) It is probably a
multicomponen-t system in which a b-type cytochrome and a

flavopro'.ein (FAD) appear to play a major ro1e. l't has been
proposed iha-: these components are functionally linked in a chain
whe.e -;he flavopro.l;ein would ac'; as NADPH*dehydrogenase-cytochrome
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b :eductase and -;he cy.;ochrome b as a berminal oxldase (Cross et
a1, 1982a; Miche11, 1983; Green ej_gf, 1983; Borregaard and
Tauber, 1984; Gabig and Lefker, 1985). 6) .i j,s absen'i or 1nac..ive
1n chronic granulomatous disease (CGD), a syndrome wi.th many
varjan-ts-ihai have:Ln common rhe comple;e lack of phagocyi:e
oxida ilve me-;abollsm 1n the homozigous form, The gene tha r is
abnormal in ;he X-llnked form ol ihe disease has been recen t1y
cloned (Royer.-Pokora et a1,1986).

STUDiES CN PARTiALLY PURIFiED ENZY[iE

in aecen. yeaf s we have been engaged in a se:ies of a c-Lemp.;s -"o

ex Jrac t and puri-fy ihe NADPH oxidase from the membranes of
neu.crophils and macrophages. The enzyme has proven -to be very
labile on de;ergen-ij exirac'cion, in keeping w1-th iis supposed
na';ure of mul-ticomponenL system. In o:der to solubilize and purify
'rhe enzyme :in ac-;ive form, s'Lrong detergen;s and high ionlc
s.trengh'ts couldn'-; be used. Therefore the enzyme was lsolated noi
as a single proteln bu-i: as a high -molecular-weighr p:o teolipid
complex. This physical sta-te prese:cved ;he O^ -f ormtng ac.i:iviiy
bu; hampered a comple-ie puriflcation. t

The bes i purificaiion p.ocedure was adop-led wi ih pig neu-.iophils,
due ;o the large availability of blood ce11s (Bellavi;e e:_el,
1985) . i-; consis-ted of extrac Lion from NaCl-washed membranes wi.ch
Lubrol-PX and deoxychola'te, followed by gel fi1'tra.ion
chromatography and glycerol densi-ty gradjen'L cent"ifugation. Table
l repor-ts'the composition and some proper-ties of par-tiatly
purified NADPH oxidase from pig neu';roph11s. The enzymes from
guinea pig neutrophlls (Serra e'i,a1, LgA4, Bellavi'te el_e!, 1984),
human neu'rroph11s (Be1lavi-ire e il_af , 1986 ) and guinea pig
peri-toneal macrophages (Ber'ùon e:_e!, 1985) were aLso par.b1a1Ìy
purified and their con'.enr and properiies were similar.to jhose of
:he enzyme from pig neu-trophils.

Slnce a 32 kDa pep-iide was-the only band thai 1n the
el ec trophoresis copur I fj-ed w'Lth cy -och:ome b ^ ", we sugges ;eo
'thab i; belongs 1;o this cy'tochrome (Beltavitezé!_gf. 1985), but it
should be no'ted-tha'i many diffe:enb.eports of -i:he mofecular
weigh of cytochrome b-245 have been pubiished (for a i.eview see
Rossi e-i_a1 , 1986 ) . The reason for ;hese disc.epanclecies is s ti11
ma-t.iler of discussion bulJ probably they are due.to ihe differen.;
procedures adop-ied by -;he varlous inves ttgators oi -;o the presence
;n "-he cycoch-ome of seve:al subunils ,ha.: may be ln cì_ffe:.ent
agg.ega:1on s..a iies according -to .bhe experimental condi-tions.

THE ROLE OF CYTOCHROI,lE b .-245

The involvemenr of a cy;ochrome b in-the respiaa;ory sys'tem of
phagocy ies was firs ily sugges'red by Shinagawa e.t a1 ( 1966 ) and
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Table 1. Composii;ion and some properties of NADpH oxidase
exi;racted and partially purified from pig neu-t:ophi1s.

1. It con-iarns high concentration of cytochrome b r 1. soo.-
-245.-2,O00 pmoles/mg protein).

2. i; coniiains phospholipids (1,800 nmoles/mg protein), mosily
P. E. , P. C. , Sph.

3. ii con'bains very 1i'ti1e FAD (40-5O pmoles/mg protein) and no
quinones.

4, its only electron acceptor is mo1ecu1a1- oxygen. No diaphorase
ac-bivl-:;y is preseni; in ijhe enzyme complex.

5. Turnover number wi-i;h respeci io cyLochrome b 
",.: 

g-1O/sec.
6. The pro';eolipid complex loses the ac tivi.ty ,À6fr'1.: i=

dlssociated by high deiergenL and salt concentra-tion.
7. The purifica-tion is associaì:ed with increase of concentration

of a pro'tein of 31.5-32 kDa ( in SDS-e1ec-trophoresis ) .
8. The 32 kDa protein is markedly phospho:yla.bed in ihe ac-tiva,ted

enzyme complex.

was ex-;ensively s'tudied by Segal and Jones (Segal g!_g!, 1978). A

large series of evidence in favor of -ihe par;icipa-lion of,chis
cy'rochrome (ca11ed b _,. f:om its characterlstic 1ow mid point
po ten;ia1, o. b55B f:5il-ctre o( peak of rhe ieduced-oxi dized
spect.um, here also referred simply as cytochrome b) tothe
electron transfer from NADPH i;o oxygen has been repor,red (for a
review see Rossl e:_a1, 19e5). Partlcula,-1y importan-L in this
respec-t have been'ihe studies on CGD leukocyi:es, where it has been
shown that cytochrome b-245 is absen-t or func-tiona11y inactive
(Segal e!_C!, 1983). The reduced-oxldized visible spectrum of ,chis
cyroch:ome is shown 1n fig. 1.

On'uhe other hand,'the pariicipa'tion of cyiochrome b to O

forma'tion has been quesiioned on .the basjs of ihe followiig
findings; Firs-t, -;he reduction of cytochrome b in anaerobiosis by
NADPH is ve:y slow and does no-i accoun-t for the enzyma.;ic ac-Livi;y
in aerobiosis (Babior, 1983), second, -the cytochrome b according
to rizuka gj_ef (1985) does not bind CO and-therefoi.e has nor rhe
properries of a rermr'nal oxidase, -third ihe NADpH oxidase purified
by I'larkerù et a1 (1985) and by Doussie.re and Vignais (19e5) did
no-; contaan visible spec-trum of cytochlome b. However, in our
opinion rhese findings do no-i exclude a roÌe for -the cytochrome b
in che NADPH oxidase. in faci, as far as ihe fi?st point is
concerned. Cross e!_g] (1985) showed that the reduciion of
cy;och,:ome b in aerobiosis 1s fast enough'to account for rhe
overall -Jransfei of elec;rons from NADpH .bo oxygen; second, some
authors have repor-ted'that cy-tochrom" b.,_ aciually binds CO,
a1;hough a'i a very slow raie (Cross 5_èil'rgezb; Betlavi.te et_a1,
1983, Pember e.i_al, 1984) and in any case i,; cannot be excluded
i:hat the cy-tochrome reacts with oxygen noi by way of the formation
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Re duc e d-m i nus -ox i d 1z e d sp e ctrum
of cy-;och:ome b ^._ pa:,iaì[y
pu:'ifìed lnom guinea pig
peritoneal macrophages (BeriJon
ei al, 1985).
Protein concentration: O.3 mg/
/nl -
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of an oxygena ied fo"m bu-i through a direcr con-tac.; be iween
molecul,ar oxygen and the heme edge, as sugges-ted by jizuka_et_al

(1985); ihird, as far as ihe purrfica:ion of the NADPH oxidase is
concerned, ;he lack of cyiochrome b spec'lrum in some purlfied
ox;ldase preparations does no't exclude.ihaìt 1't participaltes io-the
:eaction in the whole membrane or in-i:he enzyme complex lsola,ced
wi i;h di f f eren-:; procedures ,

rn oui experience the cytochro*" b-_rr^ was always associated wi-ih
'ihe NADPH dependeni O^ -forming ac;lvity, irrespective of ihe
isoÌaLion me'rhod empfSyeO. rle àfso repea-bed;he wo;:k of l,larker-i
g!_gf (1985) and we found that the NADPH oxidase lso1a'ted f.om
human neu"trophils by this proceduie aciually coniains a

substan'tia1 amouni: ol cy-:;ochrome b-245 (Bel1avi-ie el: a1, 1986).

;n orde. 'to be-i-ter unders'tanding -che role ptayed by cy iochrome b
rn;he neu';rophil metabolism we have inves;iga-ted the relationship
be rween 'the cy;ochrome b reduction in in'cac-i cell-s ac,riva.ied in
anaeroblos:s and NADPH oxfdase activation. Figure 2 shows-tha.j;
cy;ochrome b reduciion occurs only when the cel1s are ac-iivated
and in-ihe same range of PMA concen-tratlon thair causes also'the
ac tlva iion of bo ch NADPH oxidase and respira-tory burs i, measured
as oxygen consump rion. Figure 3 shows -tha-t in -ihe time af -Jer the
addi irion of a f ixed dose of PMA 'rhe.e is a progressive ac-tiva..ion
of ;he oxidase and of cycochrome b reduc'tlon, with similar
kine'tics. The only dif f erence is ìha i cy';ochrome b reduc-tion
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Fig. 2. CyLochrome b-245 reduction in neutrophils activated 'in
anaerobiosis compared wi-th';he correspondlng NADPH oxidase
ac-tivi iy of ce1-L--f reC par-iicles and wi ih oxygen consump "i on of
jrn:act ce11s. a x LO7 pig ruut.ophils were il'cuUateO 

"a 
37 oa,in,

sioppered cuverte under a continuous flux of oxygen-free ni irogen
and under continuous stirring, ln 1 mf of Krebs-Ringer phosphate
buf f er supp.l emen'ced wi lh I O mt4 g-Iucose, 1 U/ml heparln , 2OO I)/nl
catafase and 0.4 mg of glucose oxidase. The reference cuve-t;e was
no; cfosed and contained iJhe same mixiure withouL glucose oxidase.
The indica'.ed doses of PIvIA were added to the sample cuvette and
af-ie. 10 min'che difference spec-trum was recorded wi'th a 576
Pei'kin Elmer spec-trophotomet,er and the cy;ochrome b ieduc L.j on was

calcula ted af, 4?6^4O5 nm usi ng the ex;lncrion coeffic i eni: of 106
-1 - 1ml'1 cm . ?he ce11s were immediately frozen:ln liquid ni-trogen,

chawed and sonica-bed. The celf-f:ee par;ic1es were prepared and
'lhe NADPH oxidase activity was assayed as described (Bellaviie e:
a1, 1983). Oxygen consump';ion_was measured with Clark oxygen
elec'trode using cells (4 * tO7) suspended rn jrhe rbor" ridim
wi ;hou-t glucose oxj-dase.

leaches rhe maximum a couple of minutes before ihe maximum of
NADPH oxrdase activity. ?he reason for ihis discrepancy could be
due to the faci thaL cyroch.-ome b reaches a plateau already when
a maximum of 60% of to'ùa1 celI cytochrome b is reduced and
-Lheref ore a-ù .ihis poin i: a -;hermodynamic equilibrium be-iween the
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Fig. 3. Time-course
aciiva'.ed bY PI'1A in
celI- free Particles
in Flg. 2. NeutroPtri

oxidized
the NADPH

condi-iions
increased superoxi-de p;'oduction'

On sampl-es ai differen-b ac-tivation s-ba-ie and cyiochrome b

:educ-tion we measured ihe kinetlc propeilties of NADPH oxidase

$ig, a) Th enzyme from ceIls actlvated wiih dj'fferent doses of

Pt{A (panel A) and with'the same dose for two dlfferen't times

showed i:he same Km for NADPH, while the maximum velocity of the

reac-tion inci'eased by increasing 
'he 

ac-tiva-tion ' thls lndicates

i;hat in;he couase of ihe activa'1;ion'chere is no'i a progressive

increase of ihe affinity for the substraie of all the enzymes' bu'i

-;here is an highei'efficlency in the'iranspor'; of elec'trons f:om

NADPH io oxygen. These daba sugges';.1:ha-t'ihe superoxide forming

ac.;1vi-iy depends on ihe number ol oxidase-cytochrome b-245

complexes -that enrer in;o an active (capable of -iransporiing

elec'trons) stabe. The limrting sbep of -the ac-tiva'tion mechanlsm

would be-the recrui-imeni: of cyiochrome b molecules in an ac-tive

complex and not 'the affini'Ly of the enzyme fo' NADPH'

and ì:he reduced forms could be reached' On ihe other hand

oxidase is assayed as o. production in aerobic

and an increased ac iivS'lion would be reflec'ted in
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Fig. 4. Lineweaver-burk plots of NADPH oxidase aciivity of ceII-
free paflticles isolated from neuirophils at variable activatj.on
state. The cel-1-free particles were.isolaied from pig neuirophils
ac-tivaLed in anaerobiosis as described in Eigs.2 and 3, with
various doses of PMA for 10 min (panel A) and wi-th 50 nglmt pUA
f or di f f eren'r 'time ( panel B ) .

These data are consisten'; wiih our ;ecen.i findings that cyÈochrome
b or a protein associa';ed with ii is phosphorytaied in ac-tiva-ted
celIs (Bellavj.te et_at 1985, papini et_a1 1985), As ir can be seen
in Fig. 5, the proiein of 32 kDa, that we have found,;o be
associa'ted wlth cytochrome b 'throughou-t 

5Ee purification (Tab1e 1),
markedly increased'che incorporation of --pi in ihe membranes fi,om
bo'th. PitlA-ac'civated and phagocyi;osing neu-trophils. This f inding
suggests that the phosphoryla.tion of cytoch:ome b or of one of i-!s
putative associated proteins 1s a fundamental s-tep of -the
ac';ivation mechanism, possibly by faciliiating';he i,n-teraction
wi-th some proximal electron carrier (Bellavite er_al, manuscr.ipt
in preparation). Whe'ther othe: concomi-tant modifica,;ions of -ihe
membrane are also necessa.y in order to trigger .the respiratory
burs-: i.emains i:o be inves iiga-bed. The stimula,ùory ef f ec-L of fa.t,;y
acids onthe NADPH oxidase in ce11-free system (Bromberg and plck,
1984) suggests that the modificatlon of the prope.-ties of .ihe
lipid bilayer may facilitate the inieraction between crucial
membrane and cy-;osolic pro-teins.
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Phosphopro tein pa-:-ierns of res-ting and
stimulared negtrophils. Pig neuirophils were
labeled wi i:h "'pt and then incuba-ted for 10
min wi uhou'i s Jimulani ( lane 1 ), wiih fOO ng/
m1 PMA (1ane 2) and w:th 4 ng/nl of opsonized
zymosan (lane 3). The membranes were Lhen
isola ted as described ( BeJ-lavlte e-t_a1 , 1985)
and subjec'ted io SDS-polyacrylamide
eleciropho.esis according to Laemmli (197O).
The gel was dried and exposed to X-ray film
as descrrbed (Papini e'; a1, 1985) .

; .'- :.

PREL]IvIÌNARY RESULTS W;TH ANTiBoDIES To NADPH oXiDASE

Afier having identified ihe 32 kDa pep.tlde of neu,crophil,s
membranes as an impor-tan-. componen'b of the NADpH oxidase and
p:'obably the cy'tochrome b ^-_ iJseIf, we decided to raise
an'tibodies agains't .irt= p"Ét3in i n order to bet'ter investiga-te its
role in che oxidase complex. The rationale of'this approach was
the at;empt of obtaining an';ibodies'Lha-t coul-d in-ierfere with.the
enzyma'tlc func-iion or';hat could be employed-to purlfy the protein
by affinity chroma';ography.

Polyclonal antibodies from rabbi't serum and a monoclonal mouse
an.cibody (designated 1G4-D9) were obiained by conventional
proceduraes, using as an'cigen ihe 32 kDa pro.tein excised and elu.ted
from SDS-polyacrylamide gels s-tained with Coomassie blue R.-250,
The ani:1gens recognized by polyclonal and monoclonal an,tibodies
were demons'ira'ted in partially purified samples of NADpH oxidase
separated in SDS-polyacrylamide gels and blotted on.io
ni';roce11u1ose. Flg. 6 shows a typical immunoblot of .ihe NADpH
oxidase sample. As it can be seen, polyclonal an'tibodies :.eac,r
wirh ihe 32 kDa proiein and wi-th-i;wo o,cher pro'ieins of
approxima'iely 28 and 15 kDa, while 1c4-D9 reac.ts wi.bh,;he 15 kDa
proreln. The reason why a monoclonal an,;ibody obiained using as
an-jigen r;he 32 kDa protein binds ro a pro-;ein of 15 kDa of the
NADPH oxidase sample deserves furiher investiga-tion, af-;hough i.: is
conceivable'ihat'the 15 kDa pro,rein is a p:oieo1yr.bic fragmen.b of
'irhe 32 kDa pro-be j-n.
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Frg. 6.A

32 t+

Immunoblot of par tial1y purified NADpH
oxidase from pig neuì;rophi1s. polyclonal
.abbii .gG and mouse monoclonal an.bibody
iG4-D9 arised agains; ihe 32 kDa
pfo-iein, vJere purilied by ammonium
sulphate p"ecipj.';aJion and DEAE-cetlulose
chromatography. NADPH oxidase was
paIiially purrfied acco"ding -to Bellavite
g!._g] (1985), sepai:a'.ed on SDS-polyacryla
mide gel and blo-;-::ed on-ilo ni-trocelf uÌose.
?he ancigens were vlsuafized wi-th an
indirec.; enzyme-linked immunosorbeni
assay using as second an'ribody goa'; anti
.abbi-i or goa i anti mouse IgG con juga'ted
w1-ch horseradish peroxidase. Lane A:
immunoblot made with polyclonal rabbi-:
igG. Lane B: immunobfo-c made with
monoclonal mouse antibody ;G4-D9,

15k

The an'iigen;ecognised by 1G4-D9 appears'io be highty restric,ted
in i;s expression, as assessed by lndi:ec.; binding assays-io ie11s
and detergen; ex';:acis, There was no binding of 1G4-D9 to extl.ac-is
of pig 1ivei, brain, ery;hrocy'ies and lung-rissues. The an.ij.body
bound, bes-ides -to prg neu-LrophiÌs, -;o human normal and CGD
neu'irophils, ei-ihe: as intact cef 1s or ce11 lysa.tes. The
specifici-;y of 1G4-D9 antigen was also assessed by incuba ring pig
spleen c:yostaì;ic sec;ions wi-th 1G4-D9 ani;:body. Fig.7 shows -ihat
also 1n spleen sec';ions the reac.;ivity was confined.io
gianul-ocy-;es.

A-;'Lemp;s ;o inves-ciga-te -the ef f ec.b of ;G4-D9 monoclonaf an tibody
on neu;-.ophi-L funciions excluded any influence on O^ fo:mjng
acìivi'ry of in ìiact cell-s or of paILialIy pu:if ied N6DpH oxidase.
No effec-i could be demons";ra'ced al,so on exocy-tosis. New
experìmen-;s using as fmmunogen par-tia11y purified and aciive NADpH
oxidase p:epa::ations have been undertaken in ou: laborato:y wi,Jh
;he aim to isofa-ie monoc.Ional an.tibodies agains.t,lhe 32 kDa
protein in i-;s na-ive and enzymatically active form.
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Fig. 7. -mmunohis;ochemical charac teriza i;ion of monocfonaf
an-;ibody jG4--D9. Spleen cryos-ta-ir sec tions from swine were f ixed in

cold ace-;one, dried and p.ocessed wi ih a s;anda:d alkaline
phosphai;ase technique ( APAAP ) described by Co::dell 9!-el ( 1982 ) '
Levamlsole was used fo. inhlbi iion of endogenous alkaline
phospha;aseaciivì;y.Seccronsincubabedwibhnon-immunemouse
se.um or omii':ing fi.sù aniibody using'the same APAAP s.iaining
p,'ocedure wene nega-ive.
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