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INTRODUCTION

Phagocytic cells (neutrophils, eosinophils, monocytes and
macrophages) are capable of converting oxygen into potentially
toxic species such as superoxide anion, hydrogen peroxide and
hydroxyl radical. This peculiar metabolic pathway, which is
called respiratory burst, is turned on when a membrane-bound
enzyme, the NADPH oxidase, is activated. Other reactions, such
as those of the glutathione cycle and of the hexose
monophosphate pathway, are secondary to the triggering of NADPH
oxidase, having the function of continuouslﬁgpply of reduced
NADPH and of intracellular detoxification.

The molecular structure of the NADPH oxidase has not
completely clarified yet, but there is evidence that it is
composed by an electron transport chain, where a flavoprotein,

a cytochrome b with low potential (cytochrome b g’ or
cytochrome b ) and possibly other proteins of unknown nature
are assembled in a functional complex. Membrane

phospholipids gigegstability and possibly regulate the function
of this complex.

The free radical forming system is activated during
phagocytosis and the generation of oxygen free radicals
significantly contributes to the defensive (bactericidal and
tumoricidal) function of neutrophils, eosinophils and
macrophages. On the other hand, other agents that are not
related to phagocytosis may trigger the respiratory burst.
Toxic oxygen derivatives may diffuse into the extracellular
space and damage connective tissue macromolecules, cell
membranes and even cause DNA mutations.

In this brief review we will consider: I) the agents that
are able of triggering the respiratory burst, especially in

Free Radicals, Lipoproteins, and Membrane Lipids 23
Edited by A. Crastes de Paulet ef al.
Plenum Press, New York, 1990



relation with lipid metabolism, II) the mechanisms of their
action and III) the possibilities of regulation of the
oxidative metabolism at cellular level.

I. AGENTS THAT TRIGGER THE RESPIRATORY BURST OF PHAGOCYTES

As it can be seen in Table 1, besides the phagocytosable
particles, a large series of substances with different chemical
composition are able of interacting with the cell leading to
its activation. The action of some of these agents may be
related to lipid metabolism and vascular pathology. In fact,
arachidonic acid, leucotriene B , platelet activating factor
are potent stimulants of the burst and at the same time are
produced and released by activated leukocytes, therefore acting
as messengers and signals for further cell activation and
amplification of the inflammatory process. The effect of
acetylated LDL is noteworthy, because monocytes and macrophages
exert a scavenger function into the vessel intima by taking up
excess of modified lipoproteins. However, concomitant
activation of oxygen free radical release could be one of
the pathogenetic mechanisms of damage to the vessel wall,

Table 1. Some stimulants of phagocyte's metabolism

PARTICLES REF.
Opsonized bacteria, fungi, virus 10,11
Immunoglobulin aggregates 12

LIPIDS AND LIPID DERIVATIVES
Arachidonic acid and other fatty acids 13;14

Leukotriene B4 15
Diacylglycerol 16
Platelet activating factor 17
Acetylated LDL 18
Cerebrosides 19
PROTEINS
Concanavalin A 20
Anti-leukocyte antibodies 21,22
Complement fragments (Cb5a, C567) 23,24
Tumor necrosis factor 25
Phospholipase C 26
PEPTIDES
N-formylated peptides 27
Substance P 28
OTHERS
Calcium ionophores 29
Urate crystals 30
Sodium fluoride 31
Low—sodium solutions 32
Detergents 38,34
Cross-linking reagents 35
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inflammation, sclerosis and possibly cell transformation.

Among the proteins, the effect of CS5a and of tumor
necrosis factor (also called cachectin) are probably important
in human pathology. By triggering leukocyte metabolism, the
intravascular complement activation and the release of TNF by
activated mononuclear phagocytes may be responsible for wasting
systemic effects and damage to pulmonary microvasculature that
often complicate sepsis, severe burns, shock.

The stimulatory effect of phospholipase C reveals the
importance of membrane phospholipids in the triggering and
regulation of oxidative metabolism. This is confirmed by the
direct stimulatory effect of diacylglycerol, the main product
of phospholipase C activity. Preliminary data from our
laboratory indicate that also phosphatidic acid, that is formed
in the cell both by phosphorylation of diacylglycerol and by
action of phospholipase D, is able of activating H_O

2 2
production by human neutrophils.

As far as the peptides are concerned, it has been recently
discovered in our laboratory that substance P (SP) is a
stimulant of H_O_ production by human neutrophils. This
undecapeptide is widely distributed in the nervous system and
is particularly concentrated in the peripheral nerve terminals
of small diameter unmyelinated sensory neurons, termed C-
fibers, which terminate in the dorsal horn of spinal cord. SP
containing fibers have been found also into the vessel wall.
Although SP is considered to be a neurotransmitter at the
central terminals of C-fibers, up to 90% of the peptide
synhesized in the cell bodies of these neurons is transported
to the peripheral terminals, from where it can be released by
noxious stimuli. Fig. 1 provides a possible interpretation of
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Fig. 1. Effects of substance P on the inflammatory cells
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the physiological role of SP. Besides the stimulation of
oxidative metabolism of neutrophils, it is known that SP
produces vasodilatation, it acts as mitogen for lymphocytes, it
degranulates mast cells and activates macrophages. This
neuropeptide therefore meets many of the requirements for a
mediator of the local inflammatory response and represents an
important link between nervous and immunological systems.

II. MECHANISMS OF ACTIVATION OF THE RESPIRATORY BURST

The mechanisms by which agonist—stimulated receptors are
coupled with the terminal effector systems such as phagocytosis,
degranulation, movement, free radical production, gene
expression, etc., are called transduction pathways (or
systems). The matter is very complex because multiple pathways
have been described, that may vary according to the stimulant
used, and also inhibitory mechanisms may be operative in
particular conditions. Clearly, elucidating the transduction
systems is important because the intensity and the duration of
the functional responses, including the respiratory burst, may
be regulated at this level.

In the attempt to simplify the understanding of this
point, three major hypothesis that provide an explanation of
how the NADPH oxidase may be activated are hegeagzggented. More
details may be found in other recent reviews. !

II.a. Protein phosphorylation

Phosphorylation and dephosphorylation of specific proteins
regulates a variety of cells responsive to external stimuli.
There is increasing evidence that this mechanism operates also
in neutrophils for the activation of NADPH oxidase and other
functions. As shown in Fig. 2, the ligand-receptor interaction,
through the coupling action of a guanine nucleotide binding
protein, triggers phospholipid hydrolysis in the cell membrane,
with consequent formation of important intracellular messengers
such as diacylglycerol and inositol triphosphate. The latter
causes calcium release from intracellular stores and calcium
influx through its metabolite inositol tetraphosphate. Calcium
and diacylglycerol promote translocation from the cytosol to
the membrane and activation of protein kinase C. Probably also
calcium/calmodulin dependent protein kinase and cAMP dependent
protein kinase are activated, although their role in leukocyte
transduction systems 1s less defined.

A large series of proteins have been found to be
phosphorylated concomitantly with the stimulation. At least two
of these phosphoproteins are involved in the NADPH oxidase. The
first is a protein, or a group of proteins, with molecular
weight of about 48 kDa. Al:hough their nature is not known, the
participation of these proteins is strongly suggested by the
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Fig. 2. NADPH oxidase activation by protein phosphorylation

observation that their phosphorylation is lacking in some forms
of a disease - chronic granulomatous disease of chilggggg (CGD)
- where the respiratory burst fails to be activated. The
second relevant protein that is phosphorylated is cytochrome

b . This cytochrome is actually a component of the enzyme
NADPH oxidase and its phosphorylation suggest a possible
regulatory mechanism at this level. The kinase responsible for

th%g modification of the protein is probably protein kinase
Cs

JI.b. Membrane 1lipid changes

The relationship between phosphorylation of cytochrome b
and the enzymatic activation is still hypothetical, because
there is no direct demonstration that phosphorylation directly
triggers the enzyme. Studies carried out in our laboratory have
shown that in cells stimulated with phorbol esters or opsonized
zymosam there is marked phosphorylation and a proportional
NADPH oxidase activation, while in cells stimulated with
arachidonic acid a very little phosphorylation is accompanied
by an high activation. We therefore concluded that
phosphorylation is not the onl% activation mechanism and this
fact was confirmed by others.

The existence of additional, or alternative, pathways of

oxidase activation is also indicated by studies of activation
mechanism carried out not in intact cells but in cell-free
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systems. These modelsA7Eggt have been recently developed in
several laboratories, allow the triggering of the
enzymatic production of superoxide in subcellular organelles or
even in purified fractions by addition of cytosolic components
and of fatty acids or detergents such as sodium dodecyl
sulphate. We have recently reported that pig neutrophil NADPH
oxidase is activatable by phosphatidic acid, an important
product of phospholipid metabolism in stimulated cells, even in
the absence of cytosolic components. We and others have shown
that the activation in cell-free system does not depend on the
protein kinase activity and protein phosphorylation.

On the basis of the above reported data, it is possible to
construct an hypothesis according to which the terminal
modification of the oxidase, responsible for its activation, is
caused by changes of the lipid milieu of the membrane where the
enzyme complex is embedded. As shown in Fig. 3, the lipid
changes that affect the oxidase activity could be either an
increase of phosphatidic acid (due to phospholipase D and/or
to diacylglycerol kinase) or an increase of arachidonic acid
(due to calcium~dependent and perhaps receptor-dependent
activation of phospholipase A2). Both these lipid changes
have been documented in the membrane of stimulated cells. The
alteration of lipid properties (fluidity, electric charges,
melting point, etc.) in the enzyme microenvironment may cause
conformational modifications and assembly of memebrane and
cytosolic components of the oxidase. The electron-transport
system can thus start to catalyse superoxide formation.
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Fig. 3. NADPH oxidase activation by membrane lipid chenges

28



EGTA
QUIN-2 2
NEUTROPHILS ~———==s———e=2} (3 -depleted
NEUTROPHILS
AGONIST ————> G-PROTEIN >
(e.g. FMLP)
AGONIST ——————) ? —p
(e.g. Con A)
NO PHOSPH. INOSIT.
HYDROLYSIS
2+

NO Ca~™  INCREASE

NO ARACHIDONATE
RELEASE

OXIDASE ACTIVATION

I i
O2 >02

Fig. 4. A third existing pathway of NADPH oxidase activation

IIl.c. Calcium_and phosphoinositide-independent pathway

The existence of a third mechanism that is independent
of calcium and lipid changes may be postulated on the basis
of recent work grom the group of F. Rossi in our
laboratory. This is schematically represented in Fig. 4.
An experimental model has been developed where the neutrophils
are completely depleted of intracellular free «calcium by
the addition of chelators. In these conditions no modifications
of free calcium, no phospholipid hydrolysis, no arachidonic
acid and phosphatidic acid formation occur. When these cells
are challenged with two different agents, either given in
sequence or contemporaneously, they undergo to marked metabolic
stimulation. Therefore a further and unknown activation
mechanism exists and is currently investigated in our
laboratory. It remains to be established whether this
mechanism, that is operative in calcium depleted cells, is
alternative or is additional to the other pathways previously
described.

III. REGULATION OF THE RESPIRATORY BURST

On the basis of the knowledge of the structure and the
activation mechanism of the NADPH oxidase it is possible to
deal with the possible ways of regulating the respiratory
burst. This subject is of great interest because it would be
useful to decrease, or increase, the intensity and the duration
of free radical production when required. An inhibition, or
down dregulation of the burst is theoretically desirable during
pathologic inflammatory processes in order to decrease free
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radical dependent tissue injury. On the contrary, an
enhancement of the respiratory burst is required in the case of
congenital or acquired defects of phagocytes that often cause
increased susceptibility to microbial infections. Here the main

literature data on these subjects will be summarized. it should

be pointed out that most studies have been done on isolated
leukocytes and their application in medical practice is still

hypothetical.

III.a _Inhibition of oxidative metabolism of phagocytes

The inhibition of the respiratory burst may be
accomplished both by interference with the activation
mechanism(s) and by blocking the activity of the terminal

oxidase.

the activation mechanism has been reported,

As shown in Table 2,

a large series of inhibitors of

multiform pathways that are involved.

Some of these agents merit particular discussion.

in keeping with the

The

homologous pre-stimulation causes de-sensitization of the

Table 2. Inhibitors of the respiratory burst that act on
some step of the activation mechanism
Agent Possible mechanism Ref.
Albumin (on arach. acid) Binding to stimulant 60
H202 + peroxidase + halide Inactivation of stimulant 61
-met-mannopyr.(on Con A) Displacement of ligand 20
Homologous pre-stimulation Receptor desensitization 62,63
Agonist-coated surfaces Receptor down-regulation 64,65
Tumor-conditioned medium ? 66
PDGF Post-recept. deactivation 67
Pertussis toxin G-protein inactivation 68
Bromophenacylbromide Phospholipase inhibitor 69
Quinacrine Membrane perturbation 70
Corticosteroids Inhibition of Ph.lipase A2 71
Non-ster. antiinfl. agents Various 72;73
Prostaglandins (E2,D2) cAMP increase 74,75
Adenosine cAMP increase 76,77
Nifedipine, Verapamil Calcium antagonists 78-80
Trifluoperazine Calmodulin inhibitor 81,82
TPCK, DFP Protease inhibitors 83,84
Sphinganine, H-7, C-I, etc. Prot. kinase C inhibitors 85
Nordihydroguaiaretic acid Lipooxygenase inhibitor 86
Disuccinimidyl suberate Crosslinking reagent 87
Opioids, benzodiazepines ? 88,89
Anaesthetics (halotane,

lidocaine) ? 90,91
Bee venom melittin 2 92
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receptor. When the cells come in contact with low concen-—
trations of a stimulant they do not activate the burst,
on the contrary they become unresponsive to a second challenge
with the same stimulant. This is an important mechanism that
inhibits the triggering of the burst in phagocytes that are
exposed to a gradient of chemotactic agents, that is during
their movement from vessels to the centre of the inflammatory

site.

Some tumors produce inhibitory factors, whose nature has
to be determined. Recent data suggest that one of these factors
may be transforming-growth factor 3. This mechanism could
protect the tumor cells from the oxidative attack by phagocytes
and therefore could allow them to escape host defence systems.

The effect of platelet-derived growth factor (PDGF) may
have physiological relevance. PDGF inhibits the respiratory
burst at concentrations that are present in serum during the
hemostatic process. PDGF does not inhibit phagocytosis and
chemotaxis. This factor may therefore play an important
regulatory role during hemostasis and wound healing, because it
prevents unsuitable activation of the burst while it does not
affect the scavenger function of these cells.

Phospholipase inhibitors are important tools for
investigating the role of phospholipid hydrolysis in the
activation mechanism, but their specificity is not well
established. Powerful inhibitors such as bromophenacyl bromide
are too toxic for use in vivo. On the other hand,
corticosteroids are poor inhibitors of the respiratory burst,
probably because they do not influence phospholipase C
activity.

A second possibility for down-regulating the respiratory
burst is the inhibition of the NADPH oxidase. The list of
inhibitors is reported in table 3. Most of these agents have
interest for research purposes only. They have been useful for
exploring the participation of individual components in
the catalysis.

A recent advance in the knowledge of the nature of the
oxidase has been provided by the production of antibodies that

inhibit the enzymatic activit By this way proteins, with
molecular weight of_65 kDa, 70 kDa and a heterodimer of
16/18 and 14 kDa, that participate in the activity of the

oxidase have been identified.
Practical application could have vitamin E, gold salts

(that in rheumatoid arthritis are used as antiinflammatory
agents) and possibly diphenylene iodonium. Imidazole is an
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Table 3. Agents tat inhibit the terminal oxidase of the
respiratory burst

Agent Possible mechanism Ref.
Cibacron blue NADPH analogue 94
%-carba-deaza FAD Flavin analogue 95
Diphenylene iodonium Flavoprotein inhibitor 96
Pyridine, imidazole Cytochrome b inhibitor 97
Quinones, vitamin E Interference with electron
transport 98-100
EDTA ca’ and Mg~ ' chelation 101
Batophenanthroline sulfonate Fe i chelation 5, 102
P-chloromercuribenzoate Sulfhydryl reagent 103,104
Antibodies against proteins
of 65-70, 18, 14 kDa Binding to oxidase 105-107
Strong detergents and salts Dissociation of complex 108
H O + peroxidase + halide Oxidative inactivation 109
Heat shock ? 110
Gold salts ? 111

inhibitor of NADPH oxidase, but at too high concentration for
to be used in vivo.

ITT.b. Enhancement of the respiratory burst

The response of the phagocyte to a stimulant may be
potentiated essentially according to two mechanisms: one is the
priming effect, the other is the activation by cytokines.

These are physiological phenomena that serve for the
enhancement of resistance to infection and there is the hope
that in near future they may be utilized also for the
pharmacological treatment of immunocompromised host. The
priming effect is observed when the cells are exposed either to
chemoattractants or to several other compounds (see table V-A)
and become more responsive to a second different stimulant. The
precise modification that is responsible for the priming is not
clear. Theeffect takes place very rapidly in treated cells, but
it is not permanent and the increased responsiveness disappears
after a few minutes.

These features distinguish priming from the up-regulation
of the burst induced by cytokines. This effect was initially
thought to be.a property of mononuclear phagocyt%§59?%¥ but it
has been recently described also in neutrophils. The
activation requires several hours of treatment of the cells and
consists in a permanent modification of the responsiveness that
probably involves new gene expression.

The cytokines that are able of augment the respiratory
burst are interferon-y, granulocyte-macrophage colony
stimulating factor, tumor necrosis factor and interleukin 1.




Table 4. Agents that potentiate the respiratory burst

A. Priming effect

Chemotactic factors (112,113 Lypopolysaccharide (114,115)

)
Phorbol esters (1186) Leukotriene B4 (117)
Diacylglycerol (118,119) Platelet activ. factor (120)
Concanavalin A (57) ATP (121,122)
Muramyl peptide (114)
B. Cytokines
Interleukin-1 (123) Interferon—g (124-127)

GM-Colony stim. factor (128) Tumor necrosis factor (129)

The mechanism of the potentiating effect of cytokines is
under active investigation. It has been shown that 6nterferon—y
increases membrane receptors for immunoglobulins, increases
gene1§¥?{§§sion for several proteins including cytochrome

58 and induces a shift of the oxidase from %Bform with
low affinity for NADPH to a form with high affinity. The
availability of human recombinant cytokines has given new
support to these studies. Interferon-y has been already
employed in vivo with promising results. This cytokine has been
shown to incrﬁase H202 production by phagocytes in patients
with tumors and to improve ox%ga%%ge metabolism of
phagocytes in a variant of CGD. ’ The study of the effects
in vivo and in vitro of cytokines will be one of the most
important research fields for leukocytologists in near future.
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