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SUMMARY. In this article, a model is presented of a network whose structure was 
inspired by the 'five elements law' of Chinese medicine. Computer simulations 
illustrate the dynamic behavior of this system, that can be set in different attractors of 
Boolean type and can be differentially modified by delays and perturbations. We 
suggest that this model may contribute to the understanding of the 'logic' of the 
regulation of biological systems by means of small and carefully selected perturbations, 
a major line of thought of complementary therapies. 
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I N T R O D U C T I O N  

The answer to the question of the usefulness of any 
therapeutic approach depends both on the clinical 
proof of its efficacy and on the rational explanation 
and understanding of its mechanism. Living organ- 
isms, from whole bodies to single cells, are dynamic 
evolving systems, not merely anatomical structures. 
They are composed of many elements the interac- 
tion of which results in behaviour that, in general, 
cannot be deduced from knowledge of the individ- 
ual components, a typical feature of complex 

systemsJ 4 
'Thinking in complexity' has a number of impli- 

cations in both conventional and complementary 
medicine. In this contribution we will focus mainly 
on the latter. Medical traditions like those of oriental 
origin and homeopathy were founded right from the 
outset on holistic and vitalistic paradigms, which 
may be interpreted, at least in part, according to a 
conceptual framework provided by the theory of 
dynamic systems and of complexity. 

A useful concept helping in the description of 
living matter is to consider its structure as a net- 
work. 7-" Networks are complex structures because 
the state and the changes of each element depend, 
directly or indirectly, on the state and the changes of 
all the other elements. Therefore, the network 
behaves as a coherent system, whose health state is 
governed and restored thanks to the connectedness 
of internal and external processes. Communication 
and coherence are guaranteed by the value of origi- 
nal information, the capacity of signaling harmful 

modifications, and the efficiency by which energy is 
channeled towards the purpose of reconstructing the 
original conformation of the system. 

In order to deal with puzzling issues like those of 
self-organization or the regulation of biological 
healing, one may take advantage of cybernetic 
models that utilize the language of mathematics and 
computer simulations? '12-1s On the basis of these 
models, analogies can be drawn with physiological 
and pharmacological phenomena. What is meant 
by analogy is that similarity between two distinct 
systems may serve to explain one of them better on 
the basis of knowledge already gained about the 
other. Analogy can therefore be used to construct 
more advanced models compared to those in current 
use and to make forecasts about unknown systems 
starting from known systems (usually physico- 
chemical or mathematical) which act as archetypes, 
i.e. as reference systems. Therefore, analogic 
reasoning, when coupled with testable hypotheses, 
is an integral part of the scientific process as 
applied to describing and understanding complex 
systems. 

Classical dynamic and systemic thinking has 
been followed by Chinese medicine. According to 
this tradition, life energy is rhythmically channeled 
through a network of reciprocal influences between 
the different organs and the different elements 
which form the body. Basically, the 'law of five 
elements' regulates the natural interactions between 
wood (Mu), fire (Huo), earth (Tu), metal (Jin), 
water (Shui) and between the corresponding organs 
of the body (liver, heart, spleen/pancreas, lung 
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"CYCLE OF GENERATION" 

~" "CYCLE OF SUBMISSION" 

Fig. I Schematic (and simplified) representation of the 
Chinese 'law of five elements'. 

and kidney respectively). These elements are con- 
nected by circular influences consisting either of 
activation (also called 'generation') of an element 
towards the nearest one, or of inhibition (also called 
'submission') of an element towards the element 
which follows the activated one (Fig. 1). 

We have tried to simulate the dynamic properties 
of a typical network system by using a computer 
program. In this paper, we explicate the structure 
and the behaviour of this system, the dynamic of 
which may vary during time, utilizing as a model a 
Boolean network of five elements tied together in a 
communicating system. Here, we have decided to 
utilize a network of five nodes interconnected 
according the rules formulated in the 'law of five 
elements'. This is an arbitrary choice, suggested by 
the consideration that this medical tradition was 
based right from the outset on a dynamic and holis- 
tic paradigm. This model is not intended as an 
explanation of the action of acupuncture but, 
instead, as a contribution to the re-thinking of the 
self-organization and regulation of biological sys- 
tems. We suggest that any theory of acupuncture or 
of low-dose effects can make use of such concepts. 

HOMEOSTASIS  A N D  SELF- 
O R G A N I Z A T I O N  

In living organisms, physiological systems cooper- 
ate to keep most functions within normal limits of 
variation (so-called homeostasis), and stressful 
experiences are followed by coordinated and inte- 
grated response patterns designed to prevent injury 
and to promote repair and healing. The physiologi- 
cal patterns are designed to enhance blood supply to 

the muscles and brain; provide immediately avail- 
able sources of energy to organs according to need; 
mount a response to specific antigens and so on. 
Signals carried by nerves and blood carry out the 
task of integrating behavior and physiology in spe- 
cific ways. The regulation of the production of sig- 
nals is remarkably complex; most of the peptide 
hormones released by a single gland (e.g. the pitu- 
itary gland) are under multiple negative, positive, 
and mixed feedback control. Furthermore, each is 
frequency-modulated and functions in a rhythmic 
manner over time. The subsystems of the organism 
that generate the fluctuating signals are in constant 
communication with each other. Because the organ- 
ism is also in continuous communication with its 
environment, the subsystems appropriately respond 
to external perturbations. 

According to the external and internal conditions 
(temperature, chemical concentrations, mathemati- 
cal parameters), a network system may assume dif- 
ferent states, or attractors. An attractor is the state or 
the series of states (pattern) to which the behaviour 
of a system is attracted. It therefore possesses an 
important property - stability. In a system subjected 
to perturbations, movement tends to be towards the 
attractor. The theory of dynamic systems shows that 
the attractor may be a single point, as, for example, 
in the trajectory of a pendulum when it reaches the 
stationary state, or a finite number of points reflect- 
ing a periodic-type behaviour (orbit), or an infinite 
system of points generating a figure in the form of an 
orbit which never repeats itself identically, as may 
happen in chaotic systems ('strange attractors'). 

The choice between one state (or attractor) and 
another possible state (or attractor) often depends 
on the experience to which the system is exposed. 
The modifications which the system has undergone, 
are stored in the space-time as specific permanent 
and semi-permanent structures, whose existence 
influences further development and subsequent 
responses of the system itself. Unlike what happens 
in a system in a state of reversible equilibrium on 
changing the external or internal parameters, in a 
complex system a situation can be reached in which 
there is a symmetry breaking, or an irreversible 
change. While it is true that random fluctuations and 
perturbations can usually be damped, beyond cer- 
tain threshold values, or in the presence of appropri- 
ate environmental conditions, these effects are not 
annulled, but with the system acting as an amplifier, 
a reaction is triggered which removes the system 
from the reference state. 

Systems with mixed feedbacks (both positive 
and negative feedback) and multiple feedbacks with 
different time constant are sources of abrupt changes 
and also of deterministic chaos] ~'17 This is the case 
of the whole organism and of the whole cell, which 
can be described as dynamic systems where the 
'equilibrium' is a special case of an attractor, that is, 
the integration of a number of attractors. As a con- 
sequence, healthy and pathological states become 
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interpretable as different types of attractors, which 
may be converted from each other by bifurcations 

or critical perturbations. Rapid state changes and 
bifurcation are characteristic of networks that are 
sensitive to very weak initial conditions that lead to 
widespread changes in the whole system. 

Changes of attractor represent a potential prob- 
lem for the healing process because by this way a 
certain specific behaviour or structural modification 
can become fixed in a pathological and repeated pat- 
tern, losing the possibility of spontaneous and fully 
reversible modifications. This kind of pathological 
modification of a dynamic system can be considered 
a 'erroneous adaptation', where the system finds a 
fixed point or a periodically oscillating behaviour 
outside the normal, original, range of variation. In a 
particular sub-set of the space-time, i.e. locally or for 
a short period, this new attractor may appear as the 
most convenient in terms of energy expenditure, but 
for the system as a whole and for the future 
prospects of development of the system itself, an 
erroneous adaptation can be highly deleterious. 
Something like this process can be envisaged in the 
transformation of an acute inflammation into a 
chronic reaction, or in the heart and blood vessel 
hypertrophy in chronic hypertension, or in the recep- 
tor adaptation that justifies the hyperglycemia in 
hyperinsulinemic type II diabetic patients. Also, the 
tissue protein or lipid deposits that can be found in 
amyloid diseases (including Alzheimer's disease) 
and in arteriosclerosis may be seen as an adaptation 
of tissue homeostasis to a chronic load of pathologic 
precursors of these deposit moieties. 

In synthesis complex systems are dynamic (i.e. 
they change in time), self-organized and open to 
external regulation. Self-organization is based on 
the existence of multiple elements (ions, molecules, 
molecular aggregates, cells, organs), that are linked 
by multiple and reciprocal interrelations by which 
continuous quantitative and qualitative changes 
occur. Besides being endowed with self-regulating 
properties, it can be seen also as an open system, i.e. 
a system that can be profoundly influenced by 
external perturbations, coming from its environ- 
ment. Thus, self-organization does not mean that 
such an admirable capacity of increasing and main- 
taining complex forms and functions can occur 
independently of external help. On the contrary, the 
thermodynamic stability of a system is guaranteed 
by the continuous exchange with the environment. 
Life in general and healing in particular can occur 
only because living systems are open systems (also 
called dissipative structures). 

D E S C R I P T I O N  O F T H E  M O D E L  

Having summarized a few essential issues regarding 
biological complexity, we present a new model of a 
network of five interconnected elements which 
allows a qualitative simulation of the behaviour of 
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homeostatic systems. Using this model, the change 
of attractor induced by pathological perturbations 
can be observed and the reversal of change (heal- 
ing) can be induced by a similar perturbation. 

To describe the behaviour of a great network 
composed of many elements coupled together, each 
of which may be in an active or an inactive state, we 
resort to the use of models based on Boolean net- 
works (after the logician George Boole). Artificial 
networks consist of a set of processing units (nodes) 
which are interconnected via a set of weights (anal- 
ogous to synaptic connections in the nervous sys- 
tem) in a way which allows signals to travel through 
the network in parallel as well as serially? ° The 
nodes are simple computing elements behaving like 
a switch: when the sum of incoming signals exceeds 
a threshold, the node fires a signal toward another 
node. 

In such a network, formed by a number of nodes 
N, the behaviour of each node (active or inactive) is 
determined by the input variables which connect or 
disjoin it from the behaviour of the other nodes. 
Each node can have a number of inputs according to 
choice. If the number of inputs is K, the possible 
combinations of N variables will be N K. Clearly, 
there are infinite possible structures of networks 
that could be taken into consideration to simulate 
the behaviour of complex homeostatic systems. 
Either the number of nodes (here referred also as 
elements), or the number of inputs for each element, 
or the Boolean rules (Boolean operators, such as, 
for example 'AND' ,  'OR' ,  'NOR'  and positive or 
negative influences between the nodes) can be set. 

Figure 2 shows the example of a simple network 
of five nodes which are interconnected in a way by 
which each node activates the node that immedi- 
ately follows (in alphabetical order) and inactivates 
the node two ahead. Therefore, each node receives 
two inputs, one activating and another inactivating 
and is regulated by them accordingly: it may be 
either active (ON) or inactive (OFF), according to 
the state of its regulating nodes. In the case that both 
regulatory nodes are in the same state, the regulated 
node is set either ON or OFF in an arbitrary way as 
an initial option that characterizes the system. Table 

1 shows the definition of the model described in 
Figure 2. Since we have five elements with two 
states, the possible combinations of states ( 'pat- 
terns') are 25=32. To every one of the possible 32 
different patterns, a number has been assigned. This 
has been done in order to make easier the monitor- 
ing of the change of patterns during time when the 
behaviour of the system is followed during subse- 
quent cycles of transformation. 

Using a program (in this case, 'Model Maker'  
software for Windows from Cherwell Scientific 
Publications, Oxford, UK) it is possible to perform 
various simulations by varying the initial conditions 
of each node. Since the elements are connected by 
influences of either stimulatory or inhibitory nature, 
by activating or inactivating each element in the 
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Fig. 2 Model of  a network of five elements linked by activating and inactivating influences. The definition of  the Boolean 
functions of  this model are reported also in Table I. For other explanations, see text. 

P a t t e r n  A B C D E P a t t e r n  A B C D E 

n, 
32 for 
31 for 
30 fo r  
29 for 
28 for 
27 for 
26 for 
25 for 
24 for 
23 for 
22 for 
21 for 
20 for  
19for  
18for 
17for 

I I 
I I 0 
I 0 
I 0 0 
0 I 
0 I 0 
0 0 
0 O 0 
I I 
I l 0 
I 0 
I O 0 
0 I 
0 I 0 
0 0 
0 0 

n. 
16for 0 
15 for 0 
14for 0 
13 for 0 
12for 0 
llfor 0 
lOfor 0 
9 for 0 
8 for 0 
7for 0 
6for 0 
5 for 0 
4for 0 
3 for 0 
2for 0 
If or 0 

I 
I 0 
0 
0 0 
I 
I 0 
O 
0 0 
I 
I 0 
O 
O 0 
I 
I 0 
0 
0 0 

I corresponds to " O N "  state and 0 corresponds to "OFF" state. 

network at each interval time, we can observe the 
evolution of the states (patterns) of the network in 

subsequent cycles. For the sake of simplicity, each 
passage from one state to another is implemented by 

synchronous modification of all the elements 
involved. 

The system passes from one state to another in a 

deterministic manner and then, in view of the fact 
that the possible combinations are not infinite, it 

will always end up sooner or later by finding itself 
in a state previously formed, thus resuming the 
cycle of transformations. This is shown by Figure 3, 
where the evolution of the same system is followed, 

starting from a number of different patterns. All the 
patterns shown in Figure 3 are linked in a chain 

according to which the system, after a precise num- 
ber of steps, is 'attracted' towards a cyclic behav- 
iour where three different patterns are repeated. 

The cycles of states which Boolean networks 
pass through in the course of time are called 
dynamic attractors, and each network, if left to its 
own devices, will sooner or later finish up in one of 
these attractors and stay there. The series of differ- 
ent patterns that form repeated cycles can be plotted 
in a time-course diagram that visually describes the 
attractor(s) to which each system converges, start- 
ing from a given initial condition. Figure 4A reports 
the trajectory of the attractor starting from pattern 
number 1 (i.e. a pattern where all the elements are 

initially set 'OFF').  It can be seen that the system 

sets itself in the attractor very quickly and subse- 

quent variations appear as an oscillation with period 
of three time units. Figure 4B demonstrates that the 

same attractor is rapidly reached also starting from 
initial conditions where all the elements are set as 
'ON'.  Plot C, D, and E of Figure 4 demonstrate that 
the same system can have different attractors. 

Of the four different attractors, two have the 

aspect of periodic attractors (with period of three 
time units), while two others are point attractors. If 

25 ", 
j 

¢ 
/ 

31 " ' - .  4 "" 

Fig.  3 Dynamic changes of the network of five elements 
described in Figure 2, starting from several different initial 
patterns. The symbols correspond to those of Figure 2 and 
the number of patterns correspond to the classification 
reported in Table I. 
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Fig. 4 Plots of the dynamic changes in a time period (attractors) of the network of five elements, starting from different initial 
patterns. The four possible steady-state behaviours (attractors) of the network described in Figure 2 and Table I are reported. 

one tests all the possibilities of this system, starting 
from each of the 32 different possible initial condi- 
tions, it is found that 18/32 of the initial patterns end 
in the attractor 22-19-10,  7/32 end in the attractor 
21-27-14,  6/32 end in the point attractor 18, and 
only one initial pattern (pattern 29) does not modify 
during time, representing a point attractor from the 
outset. 

In summary, the system-model here described is 
composed by five elements that have 32 different 
combinations (patterns) of ON/OFF states. When 
the system dynamic is started and is left to change 
during time according to its pre-defined rules, it 
reaches a steady-state where it makes use of only 
eight different patterns (namely the 22, 19, 10, 21, 
27, 14, 18, and 29), irrespective of the starting point. 
Moreover, if one considers the dynamic behaviour 
of the system, that is the repeated schemes that are 
formed during time (attractors), the possible 
dynamic states of the same system are reduced to 
only four. Therefore, starting from 32 degrees of 
freedom, the existence of rules of behaviour forces 
the system to only 4 degrees of freedom. In other 
words, the system utilizes the communication 
between the different elements in order to create an 
organization of patterns. This is a simple but mean- 
ingful example of self-organization in a dynamic 
system. The unavoidable tendency to organize in a 

periodic behaviour, independently of the different 
starting conditions, is an intrinsic feature of the sys- 
tem itself. 

DELAYS A N D  PERTURBATIONS 

As illustrated in Figure 2, it is also possible to vary 
the delay of the response of each element, i.e. the 
lag time passed between the receipt of the input sig- 
nals and the emission of the output signals, and to 
perform experiments, introducing perturbations, 
like an arbitrary external modification of the state of 
an element at a given time. 

Figure 5 illustrates how the behaviour of the same 
system can be changed by delays and by perturba- 
tions. Introducing a delay of two time units in the 
element E (Figure 5A), leads the system to oscillate 
between different patterns for the first six cycles, 
then to set in an oscillating, repeated behavior 
(attractor) with a period of four time units. One can 
try to make the system much more complex, intro- 
ducing delays in all the elements. Plot B of Figure 5 
shows one of these simulations where the system, 
starting from pattem 27, ends in a stable periodic 
attractor only after 40 time units; it can be seen that 
the system organizes itself by exploring different 
oscillating cycles (with periods of seven to 10 time 
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Plot A, Delay: A=I, B=I, C=1, D=l, E=2 
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Fig. 5 Plots of the dynamic changes in a time period (attractors) of the network of five elements described in Figure 2. The 
effects of the introduction of delays in the indicated elements (plots A and B) and of perturbations (plots C, D and E) are 
shown. 

units), until it finds out the right one, which allows it 
to remain in a repeated cycle, with a period of nine 
time units. 

Testing the dynamic behaviour of this system 
with different initial values revealed that the attrac- 
tor whose plot is shown in Figure 5B represents the 
final behaviour of 27/32 of the possible initial pat- 
terns. The other attractors for this system are repre- 
sented by two point attractors and namely by pattern 
18 (occurring with 4/32 of the possible initial pat- 
terns) and pattern 29 (when the initial pattern is 29). 
Therefore, we see that by increasing the complexity 
of the system (with different delays) and of its 
behaviour (showing a period of nine time units), the 
degrees of freedom are not increased but, instead, 
are further reduced. Apart from the two point attrac- 
tors (that are something like the 'paralysis'  of the 
system), the dynamic behaviour of this system is 
represented by only one characteristic scheme, inde- 
pendently of the initial conditions. The system 
'looks for '  its individual scheme/attractor until it 
finds it (according to the initial pattern, sometimes it 
employs a few cycles, other times it employs about 
50 cycles). 

Figure 5C reports the dynamic of the system in 
the absence of delays, which is represented by 
attractor 21-27-14. At the time 20, a perturbation is 
introduced by an arbitrary change of element D, 
which was set 'OFF '  with external manipulation of 
the system; as a consequence, after one cycle of 
delay, the pattern changes to a different one (in this 
case, 25 instead of 27) Subsequent patterns are also 

modified. However, after a small disorder, the origi- 
nal attractor is restored. This indicates that the sys- 
tem has the power to recover after a perturbation. 
Using a word from physiology vocabulary, it is as if 
there was a kind of homeostatic behaviour in the 
system, and this is one of the main reasons why 
such networks tend to simulate a number of proper- 
ties of biological systems. 

On the other hand, if another perturbation (ele- 
ment A=OFF) is introduced at time 50, the system 
changes its behaviour, entering into a different 
attractor (in this case, 22-19-10). Thus, the latter 
perturbation is not absorbed, but instead destabi- 
lizes the network and forces it towards another 
attraction 'basin'  whence it can no longer return to 
the previous one. The biological word that corre- 
sponds to this effect may be 'adaptation',  that is a 
permanent modification introduced by external 
stimuli. For simplicity, we can consider this new 
attractor (22-19-10) as a perturbed system. 
Although the external change is introduced only 
once, at time 50, the modification is permanent. 
This indicates that the dynamic behaviour of this 
system is sensitive to small perturbations (i.e. only 
one element of five and only once). 

Plots D and E of Figure 5 document a few 
attempts that have been done in order to restore the 
original attractor by introducing a further perturba- 
tion into the system. A specific perturbation has 
been found (E=OFF), which, when introduced at a 
certain point of the cycle (in plot D, at time 51, 
when the system is in the pattern 19), is able to force 
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the perturbed system into the original attractor 

(21-27-14). We could draw a medical analogy, by 

saying that the second perturbation (E=OFF) heals 

the system, whicfi was permanently affected by the 
first one (A=OFF). On the other hand, plot E shows 
that, if the same perturbation is introduced at a dif- 

ferent time of the cycle (in this case, at time 50), 
after a single modification (see the point at time unit 

52) the system rapidly goes back to the perturbed 

system (attractor 22-19-10). 
It is worth noting that in our network model sys- 

tem the restoration of the original attractor (Fig. 5, 
plot D) is obtained using a single perturbation (turn- 

ing OFF a node for a single time point). However, 
not all the perturbations cause the recovery of previ- 

ous homeostasis: only when both the right node (in 
this case, element E) and the right period of the 

cycle (in this case, when the system finds itself in 
pattern 19) are chosen does this occur. In other 

words, one could speculate that in order to modify 
in the right direction the behaviour of a complex 
system, we should know how the system is (i.e. its 

state at the time of intervention) and when it is sen- 
sitive to our intervention. Provided that this infor- 

mation is known, we can take advantage of the 

self-organizing properties of the system, and obtain 
large and permanent change even with small and 

brief perturbations. 

I M P L I C A T I O N S  F O R  M E D I C I N E  
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have been made by us 18 ~9 and by others 2°-22 to con- 

struct explanatory models of this principle. A com- 

mon denominator of all these models, is the 
activation of homeostasis control systems in 

immune cells or in nervous centres. This causes the 
production of regulatory signals to resume and, 
thus, activate a feedback mechanism related to the 

spontaneous progression of disease. Homeopathic 
drugs are thus thought to act as substitutes for an 

endogenous regulatory signal which, for various 
reasons, may be inadequate or ineffective because 

the system is no longer sensitive to it, being 
'blocked' in a pathological attractor by the disease 

itself. The traditional 'similia law' presupposes that 
the intrinsic tendency to self-recovery can be sup- 

plemented and actively assisted by the employment 
of suitable stimuli to a system, when it is in a spe- 

cific sensitive state. 
This type of logical-mathematical approach has 

made it possible to gain deeper insights into com- 
plex systems and the relationships between the self- 

organization of order and external influences of 
negative or positive value. Above all, this kind of 

approach has been able to demonstrate the phenom- 
enon as self-organization, that specific patterns of 

attractors may originate from multiple intercon- 

nected elements. This phenomenon is of undoubted 
importance in the interpretation of the properties of 

living systems and of every therapeutic approach 
which is aimed at the refined regulation of physio- 

logical homeostasis. 

The logical-mathematical model we have described 
helps in understanding three of the main properties 

of complex networks, typical of living systems: 
self-organization, homeostasis and adaptation. 

Moreover, the system provides a rudimentary and 
qualitative example of how external perturbations 
can have both pathological effects (inducing perma- 

nent, self-maintained modifications) and therapeu- 
tic effects (inducing a modification that allows the 

system to find the way toward the original state), by 

inducing specific changes of attractors when suit- 

able conditions are satisfied. 
Extrapolating these concepts to medicine, it is 

possible to envisage tha; major changes in the 
homeostatic systems and eventually the healing of 

the entire body could be obtained through minor but 
carefully selected stress stimuli such as inserting a 
needle into an acupoint, administering a low-dose 

remedy, or even providing the right psychological 
advice. Signals which are endowed with highly spe- 

cific information and are capable of specific interac- 
tions with the recipient system, could act as 

regulators. 
We speculate that the changes of attractors 

enlightened here by our 'perturbation' trials have 
implications also for the understanding of the action 
of low doses of drugs selected according to the 
'principle of similarity,' traditionally proposed by 
homeopathic medicine. Several theoretical attempts 
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