

Vienna 14 june 2014 Basic research in Homeopathy (Proposed by Verona Research Group)

Action mechanism(s)

Physico-chemical nature

Vienna, June 4, 2014

Saggio su un nuovo principio

C.F.S. Hahnemann Versuch über ein neues Princip zur Auffindung der Heilkrafte der Arzneisubstanzen -*Hufeland's Journal* 2, 381, 1796

"The true physician, whose sole aim is to perfect his art, can avail himself of no other information respecting medicines; than:

First - What is the pure action of each by itself on the human body ?

Second - What do observations of its action in this or that simple or complex disease teach us ?"

EXAMPLES OF INVERSE EFFECTS WITH HOMEOPATHIC DILUTIONS IN LABORATORY SYSTEMS

System	Agent	"High dose" effect	"Homeopathic" effect	Ref.
Basophils	Histamine Apis mellifica	Pro-inflammatory agents	Histamine (up to 60x) and Apis mellifica (10c)	Poitevin 1988, S.Laudy 1991, Belon 1996-2004
Rat, Guinea pig	Histamine Lung Histamine Apis mellifica	Pro-inflammatory agent	Histamine (30x), Lung histamine (18c) and Apis mellifica (7c/10c) reduce inflammation symptoms	Bastide 1975,Poitevin 1988, Bildet 1990 Conforti 1993
Rat, Mouse	Arsenic trioxide Arsenicum album	Whole body and liver toxicity	Arsenic trioxide (7c and 17c) and Arsenicum album (30c) protect from intoxication	Lapp 1955; Wurmser 1955; Cazin1987; Cazin 1991; Khuda- Bukhsh 1998-2000
Wheat, hepatoma cells	Arsenic trioxide (As2O3)	Cell toxicity	As2O3 40x, 42x and 45x, stimulate germination and cell vitality	Betti 1997-2000, Wiegant-van Wijk 1998-2011
Rat liver	Phosphorus	Hepatotoxicity	Phosphorus (30x) protects from toxic hepatitis	Bildet 1984, Guillemain 1987 Palmerini 1993 Gomez 1999
Tadpoles	Thyroxine	Increases the rate of metamorposis	High dilutions (up to 30x) inhibit the metamorphosis	Endler 1990-2010, Graunke 2007, Welles 2007, Lingg 2008, Weber 2008, Guedes 2011, Harrer 2013
Mouse, rat	Gelsemium sempervirens	Toxic and convulsivant	Anxiolytic effect (2C-9C)	Marrari 2010, Gahlot 2012, Meyer 2013.
Human and rat neurons	Gelsemium sempervirens	Toxic and convulsivant	No toxicity, gene down-regulation	Venard 2011, Olioso 2014, Marzotto 2014

- Five models have been reproduced by at least one independent research team with comparable results:
 - 1. Growth of wheat seedlings after treatment with potencies of silver nitrate,
 - 2. Human basophil degranulation after treatment with potencies of histamine,
 - 3. Amphibian metamorphosis after treatment with potencies of thyroxin or thyroidinum,
 - 4. Experimental hepatitis of the rat due to poisoning with carbon tetrachloride after treatment with phosphorus,
 - 5. Contraction of rat intestine in vitro after treatment with potencies of Atropa belladonna or atropine sulfate.

Laboratory studies

THE MODEL OF BASOPHIL ACTIVATION (St.Laudy, Belon, Poitevin, Benveniste, Hirst, Ennis, Chirumbolo e Bellavite)

THE MODEL OF BASOPHIL ACTIVATION

THE FAMOUS EXPERIMENT OF BENVENISTE (DAVENAS ET AL., NATURE1988)

 \bigcirc

 \bigcirc

Resting cell

Cell activation by high dilutions

Davenas, E., Benveniste, J., et al. *Nature* 333: 816-818, 1988.

+ Homeopathic drugs LUNG HISTAMINE (5CH, 15 CH) APIS MELLIFICA (9CH)

Resting cell

Inhibition of response to Anti-IgE

EXPERIMENTS OF SAINTE LAUDY, BELON ET AL. (1989-1993)

Ultra-high dilution (10⁻³⁶ M) of Histamine

Anti-IgE (Medium doses)

Resting cell

Inhibition of response to Anti-IgE

THE MODEL OF BASOPHIL ACTIVATION: Immunofluorescence

Vienna, June 4, 2014

PPT – 3.5

EFFECTS OF HISTAMINE AND WATER DILUTION ON CD203c Chirumbolo, Bellavite et al., Inflammation Research 2009

Reports concerning the effect of highly diluted/succussed histamine on human basophils published in the mainstream literature (part 1 of 2)

	MAIN METHODO		RESULTS			
1 st author/year (ref.)	Dilution Dynamization	Protocol of succussion	Control with dynamized water (yes/no)	Protocol/ Parameters	Effective molecular doses	Corresponding potencies
Cherruault 1989 (¹)	4C-20C (10 ⁻⁸ M-10 ⁻ ⁴⁰ M), water not specif.	Not specif.	Not reported	Optical microscopy	10 ⁻¹⁰ -10 ⁻¹⁷ M e 10 ⁻ ³⁰ -10 ⁻³⁸ M	5C-9C e 15C- 19C
Sainte-Laudy 1993 (²)	10 ⁻¹⁴ M-10 ⁻³⁸ M, water not specif.	Not specif.	Not reported	Optical microscopy	10 ⁻¹⁶ -10 ⁻²² M e 10 ⁻ ³⁶ M	Not reported
Sainte-Laudy, 1996 (³)	1C-20C, distilled water	Vortex	Not reported	CD63%	10 ⁻² M, 10 ⁻⁴ M, 10 ⁻ ²² M, 10 ⁻³⁴ M	Not reported
Belon, 1999 (⁴) (Multicentre)	15C-19C, distilled water	Vortex	Yes but not detailed	Optical microscopy	Not reported	15C-19C
Sainte-Laudy, 2000 (⁵)	10C-20C, tap water	Vortex	Not reported	CD63%	10 ⁻³⁰ M-10 ⁻³⁴ M	15C-17C
Sainte-Laudy 2001 (⁶)	13C-14C, water not specif.	Not specif.	Not reported	CD63%	Not reported	Stimulation 13C
Brown and Ennis 2001 (⁷)	10 ⁻² M-10 ⁻⁴⁰ M, water not specif.	Not specif.	Not reported	CD63%	10 ⁻² -10 ⁻⁶ M, 10 ⁻¹⁴ M, 10 ⁻¹⁸ -10 ⁻²⁰ M, 10 ⁻²⁶ M	Not reported
Lorenz 2003 (⁸)	D0-D34 water for injectable use; brandy	Not specif.	Not reported	CD63-MFI	10 ⁻²² M, 10 ⁻²³ M, 10 ⁻ ²⁵ , 10 ⁻²⁶ M	D10-D14

Reports concerning the effect of highly diluted/succussed histamine on human basophils published in the mainstream literature (part 2 of 2)

	MAIN METHOD		RESULTS			
1 st author/year (ref.)	Dilution Dynamization	Protocol of succussion	Control with dynamized water (yes/no)	Protocol/ Parameters	Effective molecular doses	Corresponding potencies
Belon 2004 (º) (Multicentre)	2C-20C, water not specif.	Hand succussed	Not reported	Optical microscopy, CD63%	10 ⁻²⁸ M-10 ³⁶ M	14C,15C, 16C, 17C, 18C
Guggisberg 2005 (¹⁰)	10 ⁻² M-10 ⁻⁴⁰ M distilled water	Vortex	Not reported	CD63%	10 ⁻² M (and 10 ⁻²² M)	Not reported
Sainte-Laudy 2006 (¹¹)	2C-18C, deionized water	Vortex 10 sec	Yes, but not detailed	CD63%, CD203c MFI, ratio MFI 203c	10 ⁻⁴ M, 10 ⁻³⁰ M e 10 ⁻³² M	2C, 15C, 16C
Sainte-Laudy 2006 (¹²)	10 ⁻² M-10 ⁻⁴⁰ M (2C- 20C),	Vortex 10 sec	Not reported	CD63%, CD203c MFI	10 ⁻⁴ M, 10 ⁻³⁰ M, 10 ⁻³² M	2C, 15C, 16C
Sainte-Laudy 2008 (¹³)	2C-16C, water deionized	Vortex 15 sec	Yes, but not detailed	CD203c index	10⁻⁴ M, 10⁻³² M	2C, 16C
Sainte-Laudy 2009 (¹⁴)	2C-18C water, not specified	Not specif.	Not reported	CD203c MFI	10 ⁻⁴ M, 10 ⁻³² M, 10 ⁻³⁴ M	2C, 16C, 17C
Chirumbolo Bellavite 2009 (¹⁵)	2C+10C-16C distilled water (ultrapure)	Vertical succussion	Yes, detailed	CD203c MFI	10 ⁻⁴ M, 10 ⁻²⁴ M, 10 ⁻²⁸ M, 10 ⁻³⁰ M, 10 ⁻³² M	2C, 12C, 14C, 15C, 16C
Mannaioni 2010(adrenaline and histamine)	2C+10C-16C distilled water (ultrapure)	Vertical succussion	Yes, detailed	CD203c, CD63 MFI	10 ⁻⁴ M, 10 ⁻²⁴ M, 10 ⁻²⁸ M, 10 ⁻³⁰ M, 10 ⁻³² M	2C, 12C, 14C, 15C, 16C

Reports concerning the effect of highly diluted/succussed histamine on human basophils published in the mainstream literature

>IN SUMMARY:

 15 publications (2 multicentre studies) 4 independent laboratories involved
 13 papers with positive results
 1 negative
 1 uncertain

QUERCETIN: A NATURAL FLAVONOL

Levistico (sedano di monte) Levisticum officinalis L.

Cappero Capparis spinosa L.

Quercetin (2-(3,4-diidrossifenil)- 3,5,7- triidrossi -4H- cromen-4-chetone)

Malus communis L.

Mela

Abundant in onion (185-634 mg/kg), turnip(110-130 mg/kg), broccoli (10-68 mg/kg) e lettuce(5-30 mg/kg). Present also in apple, orange, green tea

EFFECT OF DIFFERENT DOSES OF QUERCETIN IN HUMAN BASOPHILS

ALLERGY MODEL

EFFECT OF QUERCETIN ON MARKER EXPRESSION IN HUMAN BASOPHILS UPON ACTIVATION WITH 4 µg/ml anti-lgE

090218-guercetin and IgE-MFI

INFECTION MODEL

EFFECT OF QUERCETIN ON MARKER EXPRESSION IN HUMAN BASOPHILS UPON ACTIVATION WITH 100 nM fMLP

090218-guercetin and fMLP-MFI

PPT - 6.2

AGONIST-DEPENDENT EFFECTS OF QUERCETIN ON HUMAN BASOPHILS

Roeland van Wijk

STIMULATION OF SELF-RECOVERY BY LOW DOSES OF ARSENITE IN ARSENITE-INTOXICATED CELLS. F.A.C. WIEGANT, R. VAN WIJK et al.

The influence of a step-down arsenite treatment on the induction of hsp68-mRNA. H35 hepatoma cells were pretreated with 0 or 100 µM arsenite from 1 to 6 h, thoroughly washed and subsequently incubated in 0, 1, 3 or 10 µM arsenite. At the indicated times, RNA samples were prepared and processed by northern blotting and autoradiography. Autoradiograms are shown from a representative experiment made after hybridization with a radioactive hsp68 probe and a GAPDH probe.

Neurocyte model system

SHSY5Y neurocytes-human neuroblastoma cells

Inverted microscope image

Confocal immunofluorescent image

RESEARCH ARTICLE

Open Access

Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of *Gelsemium sempervirens*

Marta Marzotto¹, Debora Olioso¹, Maurizio Brizzi², Paola Tononi³, Mirco Cristofoletti¹ and Paolo Bellavite^{1*}

Abstract

Background: Gelsemium sempervirens L. (Gelsemium s.) is a traditional medicinal plant, employed as an anxiolytic at ultra-low doses and animal models recently confirmed this activity. However the mechanisms by which it might operate on the nervous system are largely unknown. This work investigates the gene expression of a human neurocyte cell line treated with increasing dilutions of *Gelsemium* s. extract.

Methods: Starting from the crude extract, six 100 × (centesimal, c) dilutions of *Gelsemium s*. (2c, 3c, 4c, 5c, 9c and 30c) were prepared according to the French homeopathic pharmacopoeia. Human SH-SY5Y neuroblastoma cells were exposed for 24 h to test dilutions, and their transcriptome compared by microarray to that of cells treated with control vehicle solutions.

Results: Exposure to the *Gelsemium s*. 2c dilution (the highest dose employed, corresponding to a gelsemine concentration of 6.5×10^{-9} M) significantly changed the expression of 56 genes, of which 49 were down-regulated and 7 were overexpressed. Several of the down-regulated genes belonged to G-protein coupled receptor signaling pathways, calcium homeostasis, inflammatory response and neuropeptide receptors. Fisher exact test, applied to the group of 49 genes down-regulated by *Gelsemium s*. 2c, showed that the direction of effects was significantly maintained across the treatment with high homeopathic dilutions, even though the size of the differences was distributed in a small range.

Conclusions: The study shows that *Gelsemium s.*, a medicinal plant used in traditional remedies and homeopathy, modulates a series of genes involved in neuronal function. A small, but statistically significant, response was detected even to very low doses/high dilutions (up to 30c), indicating that the human neurocyte genome is extremely sensitive to this regulation.

Microarray analysis of gene expression changes in human neurocytes

Microarray analysis of gene expression changes in human neurocytes

Scanning and data analysis

BMC-Complementary Alternative Medicine

March 2014

Exposure to the Gelsemium s. 2CH promoted the significant down-expression of 49 while 7 genes were overexpressed

~
\sim
>
0
U.
\square
_

٩N

G II	ene)	Transcript ID	Symbol	Log2 fold change		p^1	Description	
79	40	AF000424	LST1	-0.84	±	0.14	0.04	leukocyte specific transcript 1
39	0113	NM_001004726	OR4X1	-0.83	±	0.06	0.01	olfactory receptor, family 4, subfamily X, member 1
23	5746	AJ830742	AIPL1	-0.82	\pm	0.16	0.04	aryl hydrocarbon receptor interacting protein-like 1
- 28	4498	AL833920	C1orf167	-0.80	<u>+</u>	0.17	0.05	chromosome 1 open reading frame 167
22	21191	AK058068	Klkbl4	-0.79	±	0.12	0.04	plasma kallikrein-like protein 4
- 26	658	NM_012377	OR7C2	-0.77	±	0.07	0.01	olfactory receptor, family 7, subfamily C, member 2
11	2401	BC039318	BIRC8	-0.76	\pm	0.11	0.00	baculoviral IAP repeat-containing 8
28	48	NM_005298	GPR25	-0.75	±	0.15	0.02	G protein-coupled receptor 25
55	803	NM_018404	ADAP2	-0.75	±	0.11	0.02	ArfGAP with dual PH domains 2
- 38	6676	NM_198690	KRTAP10-9	-0.73	±	0.12	0.04	keratin associated protein 10-9
43	53	X04876	MPO	-0.72	±	0.15	0.04	Myeloperoxidase
N	/A	AY358413	N/A	-0.71	±	0.18	0.02	Homo sapiens clone DNA59853 trypsin inhibitor
39	2391	NM_001001923	OR5C1	-0.71	±	0.05	0.04	olfactory receptor, family 5, subfamily C, member 1
N	/A	AK094115	N/A	-0.70	±	0.11	0.04	Homo sapiens cDNA FLJ36796 fis, clone ADRGL2006817
55	287	BC020658	TMEM40	-0.70	±	0.15	0.02	transmembrane protein 40
54	209	NM_018965	TREM2	-0.69	±	0.10	0.02	triggering receptor expressed on myeloid cells 2
15	0365	AK097834	RP5-821D11.2	-0.68	±	0.17	0.02	similar to mouse meiosis defective 1 gene
40	0934	NM_207478	FLJ44385	-0.68	±	0.09	0.04	FLJ44385 protein
25	5061	NM_170685	TAC4	-0.67	±	0.14	0.01	tachykinin 4 (hemokinin)
64	4065	XM_931993	LOC644065	-0.65	±	0.23	0.04	hypothetical protein LOC644065
13	39	NM_005205	COX6A2	-0.64	±	0.17	0.01	cytochrome c oxidase subunit VIa polypeptide 2
N	/A	AK128093	N/A	-0.63	±	0.09	0.04	Homo sapiens cDNA FLJ46214 fis, clone TESTI4012623.
53	841	AY358368	CDHR5	-0.63	±	0.11	0.04	mucin-like protocadherin
93	32	NM_004244	CD163	-0.63	±	0.18	0.03	CD163 molecule
44	1239	XM_499305	LOC441239	-0.63	±	0.22	0.05	hypothetical gene supported by BC063653
71	64	NM_001003397	TPD52L1	-0.62	±	0.09	0.02	tumor protein D52-like 1
11	136	NM_014270	SLC/A9	-0.62	±	0.09	0.04	solute carrier family / member 9
	9084	NM_206895	UNQ830	-0.62	± .	0.11	0.04	ASCL830
40	724	XM_375090	FLJ44817	-0.62	±	0.20	0.04	similar to pieckstrin homology domain protein (5V 327)
64	7240	XM_934559	LOC64/240	-0.60	±	0.06	0.00	hypothetical protein LOC64/240
11	(102	DC104999	DD11 4EI1C 2	-0.59	<u>+</u>	0.06	0.00	Calcium-sensing receptor
64	4280	NM_107760	LOC644280	-0.58	+	0.09	0.04	havin-containing monooxygenase pseudogene
57	452	AB022056	CALNTI 1	-0.58	+	0.06	0.05	alpha D calagtocamina N agetylaslagtocaminyltranoforasa
41	4301	NM_001001711	DDI1	-0.57	+	0.17	0.03	DDI1 DNA damage inducible 1 homolog 1 (S. caraviciae)
11	6535	BC016964	MRGPRE	-0.50	+	0.17	0.04	MAS related GPR member E
89	11	NM 003857	GALR2	0.55	+	0.07	0.01	relation receptor 2
10	1880	NM_006686	ACTL7B	-0.55	+	0.12	0.04	actin-like 7B
63	68	NM 145898	CCL23	-0.55	+	0.12	0.05	chemokine (C-C motif) ligand 23
64	581	BC071746	CLEC7A	-0.54	+	0.08	0.04	C-type lectin domain family 7 member A
64	4003	XM 927256	LOC644003	-0.54	+	0.11	0.04	similar to Mucin-2 precursor (Intestinal mucin 2)
64	3514	XM 931594	LOC643514	-0.54	+	0.10	0.03	hypothetical protein LOC643514
37	4569	XM 935431	LOC374569	-0.54	+	0.07	0.04	Similar to Lysophospholipase
84	504	BC101635	NKX6-2	-0.53	+	0.13	0.03	NK6 transcription factor related, locus 2 (Drosophila)
73	2	NM 000066	C8B	-0.53	+	0.06	0.05	complement component 8, beta polypeptide
14	6336	NM 182510	FLI32252	-0.52	+	0.03	0.01	hypothetical protein FLI32252
15	0763	BC042847	LOC150763	-0.51	+	0.10	0.04	hypothetical protein LOC150763
20	20	NM 001427	EN2	-0.51	\pm	0.08	0.04	engrailed homolog 2
64	6258	XM 929203	LOC646258	-0.51	<u>±</u>	0.11	0.04	hypothetical protein LOC646258
15	4872	NM_001024603	LOC154872	0.51	<u>+</u>	0.10	0.03	hypothetical LOC154872
40	0866	NM_001001789	C21orf24	0.52	<u>+</u>	0.12	0.05	chromosome 21 open reading frame 24
94	57	NM_020482	FHL5	0.55	<u>+</u>	0.19	0.04	four and a half LIM domains 5
55	816	NM_018431	DOK5	0.56	+	0.04	0.03	docking protein 5
14	46	NM_001890	CSN1S1	0.57	+	0.09	0.04	casein alpha s1
28	35600	AK130941	KIAA0825	0.63	<u>+</u>	0.06	0.01	KIAA0825 protein
57	538	NM_020778	ALPK3	0.76	±	0.10	0.01	alpha-kinase 3

BMC-Complementary Alternative Medicine

March 2014

Top enriched annotation terms associated with the 56 genes differentially expressed upon exposure to *Gelsemium s.* 2c in SH-SY5Y cells.

Many of these 56 genes belong to:

neuropeptide/receptor systems
calcium signalling
G-protein coupled transduction systems

inflammatory pathways

Category	- Category Annotation Term		Genes	Fold
SP PIR KEVW	recentor	8 32E-11	AIDI 1 OB 4V1 CASP	3.68
51_1IK_KE1W	receptor	0.3211-11	OP5C1 CDP25 CALP2	5.00
			ORICI, GERZI, GALICZ,	
			TREM2	
GOTERM BP FAT	GO-0007186~G-protein coupled	6.60E-11	ORAVI CASE ORSCI	417
OO ILICA_DI _I III	receptor protein signalling	0.00L 11	CCL23 GPR25 GALR2	1.4.5
	pathway		OR7C2 MRGPRE TAC4	
GOTERM BP FAT	GO:0007166~cell surface	0.001	OR4X1 CASE OR5C1	0.08
	receptor linked signal		CCL23 DOK5 GPR25	
	transduction		GALR2 OR7C2 MRGPRF	
			CLEC7A TAC4	
GOTERM BP FAT	GO:0051606~detection of	0.02	AIPL1 CASE CLEC7A	13.23
	stimulus			
INTERPRO	IPR017452:GPCR, rhodopsin-	0.009	OR4X1, OR5C1, GPR25,	4.44
	like superfamily		GALR2, OR7C2, MRGPRF	
KEGG_PATHWAY	hsa04740:Olfactory transduction	0.09	OR4X1, OR5C1, OR7C2	5.31
GOTERM_BP_FAT	GO:0006954~inflammatory	0.02	C8B, CCL23, CLEC7A,	6.40
	response		CD163	
GOTERM_BP_FAT	GO:0006952~defense response	0.02	C8B, CCL23, MPO, CLEC7A,	4.23
			CD163	
GOTERM_BP_FAT	GO:0006955~immune response	0.03	C8B, CCL23, LST1, CLEC7A,	3.77
Careford (1999) (199			TREM2	
GOTERM_BP_FAT	GO:0006874~cellular calcium ion	0.04	CASR, CCL23, GALR2	8.53
	homeostasis			
GOTERM_BP_FAT	GO:0030182~neuron	0.04	LST1, NKX6-2, GALR2,	4.75
0.8	differentiation		EN2	
GOTERM_CC_FAT	GO:0005886~plasma membrane	0.02	CASR, OR5C1, SLC7A9,	1.65
			MRGPRF, CDHR5, CD163,	
			C8B, OR4X1, ADAP2,	
			GALR2, GPR25, OR7C2,	
			CLEC7A, TREM2	

RT-ARRAY TECHNIQUE

Real-time PCR is the gold standard for gene expression analysis studies

Real-time PCR is the gold standard for gene expression analysis studies

Plates custom

Choose any gene from the Human, Mouse, Rat, Drosophila, Rhesus macague, or Dog Genomes

- Analyze the Genes Most Important To <u>Your</u> Research
- Available for any real-time PCR instrument.
- Wet-Bench Validated design & performance.
- 2 to 3 week turn around time first order
- 2 to 3 DAY turn around on reorder
- Same Data Analysis as Catalogued Arrays

Typical examples of RT-Arrays of gene expression profiles

- Cancer PathwayFinder RT² Profiler PCR Array profiles the expression of 84 genes representative of 9 different biological pathways involved in transformation and tumorigenesis
- Neurotransmitter Receptors RT² Profiler[™] PCR Array profiles the expression of 84 genes involved in modulating the biological processes of neurotransmitter biosynthesis, uptake, transport and signaling through neurotransmitter receptors.
- Inflammatory Cytokines & Receptors RT² Profiler PCR Array profiles the expression of 84 key genes mediating the inflammatory response.
- Allergy & Asthma RT² Profiler PCR Array profiles the expression of 84 key genes central to allergic responses. CD4+ T cells differentiate into multiple subtypes during immune responses. An overrepresentation of the T helper 2 (Th2) cell subtype and the IgE antibody isotype commonly characterizes allergic inflammation, and both the cell and the molecule play central roles in allergic disease mechanisms.
- Stress & Toxicity PathwayFinder RT² Profiler PCR Array profiles the expression of 84 key genes regulated during cellular responses to stress and toxic compounds.
- Human Aging RT² Profiler PCR Array profiles the expression of 84 genes altered during aging, a major biological process and a risk factor for many diseases.

RT-Array sy panel di geni di recettori

Genes

RT-Array on

Developments of experimental studies on APIS M.

1975- > High dilutions (7C-9C) of bee venom (Apis mellifica and Apium virus, which are currently used in homeopathy to treat skin -1990 manifestations with edema, erythema and pruritus) have a protective and curative effect on about 50% of X-ray induced erythema in albino guinea pig (BASTIDE1975, BILDET1989, 1990, POITEVIN1988) **1993** > Our group studied the effects of homeopathic preparations of Apis *mellifica* (and *Histamin*) on rat paw edema induced by the injection of inflammatory doses of histamine. It was observed that high dilutions of up to 30D had a small but significant inhibitory effect on the development of edema (Conforti et al., 1993). $2004 \ge$ We confirmed a small regulating effect of Apis mellifica (4 D, oral drops) in the carrageenan-induced edema in rats but could not reproduce it in blind trial (Conforti et al., 2004) probably for technical reasons (animals with different treatment in the same cage) 2014 > Bigagli and coworkers (2014) showed with microarray techniques that Apis mellifica TM modifies expression of hundreds of genes in human prostate epithelial cells; dynamized dilutions (3C, 5C and 7C) still exert significant effects on genes involved in inflammation and oxidative stress

OMICS AND HOMEOPATHY

The rapid development of new technology platforms provides a methodological basis for deep understanding the action mechanisms and targets of homeopathic remedies.

Its widespread use would significantly advance the field by bridging the gap between homeopathy and Western medicine.

Homeopathic experimental studies. Proposals - 2014

Study of the effects of specific homeopathic drugs on well-established experimental systems (in vitro and in laboratory animals). Low and high dilutions.

E.g.: Arsenic (stress defense systems), Arnica (wound healing), Belladonna (immunological models, inflammation), Zinc (immunological models, stress defense system)

Cell models of toxicity/hormesis (neurocytes, macrophages), Inflammation (THP-1, MAC 6, lymphocytes), allergy (basophils, mastcells), healing (fibroblasts)

Systematic adoption of "Omics" techniques

Perspectives: database of homeodrug effects

- Organismic level (proving/clinical verification)
- Effects on animal models
- Cellular and molecular level
- Active principles and active dilutions
- Physicochemical state (nanoparticles?)

paolo.bellavite@univr.it

