Laboratory models of high dilutiondynamization effects: Rodent models of anxiety

Paolo Bellavite, University of Verona

- 1. Introduction and literature review
 - 2. Materials and Methods
 - 3. Results and discussion

The figures are downloadable at: www.paolobellavite.it

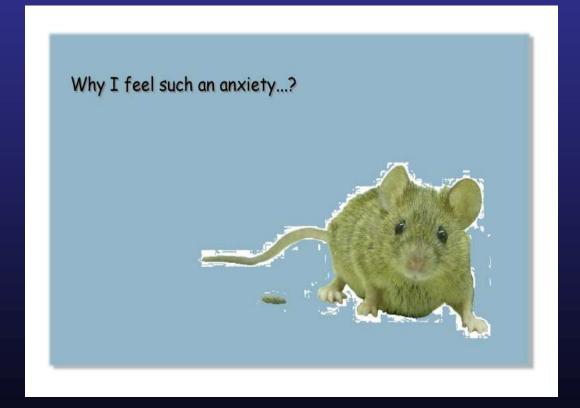
Homeopathy for anxiety and anxiety disorders: a systematic review of the research

Pilkington, K., G. Kirkwood, H. Rampes, P. Fisher, and J. Richardson. 2006. Homeopathy 95:151-162.

 Surveys suggest that homeopathy is quite frequently used by people suffering from anxiety. The evidence on the benefit of homeopathy in anxiety and anxiety disorders is limited.

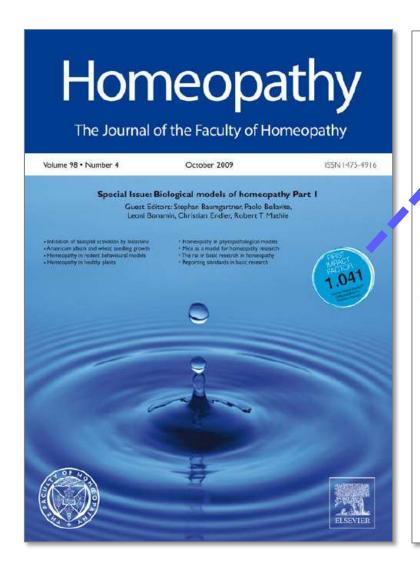
Further research is necessary:

- Observational studies
- Randomized trials
- BASIC RESEARCH (in vitro, laboratory, action mechanism of drugs)



Animal models- Background

 Research in anxiety and psychopharmacology has a long history of development of animal models.


The measurement of anxiety-related behaviour in animal models is based on the assumption that anxiety in animals is comparable to anxiety in

humans.

RODENT MODELS OF ANXIETY AND PYCHOPATHOLOGY

IMPACT FACTOR 1.041

Homeopathy (2009) 98, 208–227 © 2009 The Faculty of Homeopathy

2009.09.005, available online at http://www.sciencedirect.com

ORIGINAL PAPER

Assays of homeopathic remedies in rodent behavioural and psychopathological models

Paolo Bellavite 1,8, Paolo Magnani 1, Marta Marzotto 1 and Anita Conforti 2

¹Department of Morphological Biomedical Sciences, University of Verona, Italy ²Department of Medicine and Public Health, University of Verona, Italy

Reports on psychopathological and behavioural models of homeopathy in rodents - 1st part of 2

Date Author	Animal	Model	Remedy	Route	Main effects
1979 Binsard	Mouse	4 plates	Ignatia and Gelsemium 3CH,4CH,5CH	i.p. 3 weeks	Anxiolytic (Ignatia 3CH and Gelsemium 5CH only) or sedative (Ignatia 5CH)
	Rat	Staircase	Ignatia and Gelsemium 3CH,4CH,5CH	i.p. 3 weeks	Sedative (Ignatia 4CH and Gelsemium 3CH and 5CH only)
1980 Binsard et al.	Mouse	4 plates Escape test Rota-rod	Gelsemium 3CH, 5CH, 7CH	i.p. 3 weeks	Gelsemium 3CH reduces exploration, Gelsemium 7CH increases it
1981 Guillemain et al.		Strychnine. Induced convulsions	Ignatia 3D, 3,5,7,12CH	i.p. 0.5 ml/20g single dose	Slight protective effect of 3DH and 5CH
1986 Sukul	Rat	Cataleptogenic effects of restraint	Gelsemium, Cannabis, Graphites and Agaricus Muscarius (30CH and 200CH)	Per os	Increase cataleptogenic effects of restraint.
1991 Sukul et al.	Rat (and cats)	Electrophysiol ogy of SNC	Arnica 30CH, Hypericum 200CH, Arsenic 30CH	Per os (0.5 ml)	Arnica and Hypericum decrease firing rate, Arsenic increase it.

Reports on psychopathological and behavioural models of homeopathy in rodents - 2nd part of 2 (** non-homeopathic journal)

Date Author	Animal	Model	Remedy	Route	Main effects
1997 Cristea et al.	Mouse	Behavioural tests	Chamomilla 5CH and 30CH	Per os 4 times/day for 1 day (5CH) or 2 times/day for 3 days (30CH)	Stimulating effects with 5CH and tranquillizing effects with 30CH
1999- 2001 Sukul	Mouse	Loss of righting reflex due to ethanol	Nux vomica 30CH	Per os 0.05 ml/2 ml water and given at 0.05 ml/individual.	Protective effect
2001 Bousta et al. **	Mouse	Electric stress Light-dark test Blood cell count Gastric lesions	Atropa belladonna Gelsemium sempervirens Poumon histamine	I.p. 30 min before stress and test	Reversal of stress- induced alterations
2005 Ruiz- Vega	Rat	Sleeping behaviour	Coffea cruda 30CH and 200CH	Per os in feeding bottle	Coffea 30CH changes spectral power of EEG Delta band
2008 Da Silva Rocha	Rat	Open field	Rhus toxicodendron 200CH	Per os 24 h	Decreases locomotion in hyperactive rats
2008 Pinto	Mouse	Open field Forced swimming	Chamomilla 6CH	Per os 7days	Prevents decrease of general activity. In O.F.

Animal models-Our objectives

- To set up validated models in animal models of anxiety-behavior (and <u>should</u> allow publication in major intnl journals!)
- 2. To test the effects of several homeopathic medicines used in anxiety in humans (5CH)
- 3. To identify one or more active compounds and to test several dilutions/dynamization in rigorous reproducible way (4-5-7-9-30 CH)

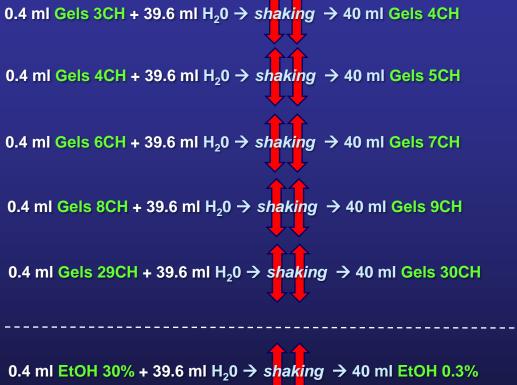
Laboratory models of high dilutiondynamization effects: Rodent models of anxiety

Paolo Bellavite, University of Verona

- 1. Introduction and literature review
- 2. Materials and Methods
- 3. Results and discussion

The figures are downloadable at: www.paolobellavite.it

DRUGS


- 1. Homeopathic drugs were provided by Boiron Laboratories (Lyon) in 30% hydroalchoolic solution.
- 2. Just before starting treatments, the solutions were 100-folds diluted in distilled sterile and apyrogenic water, then vigorously succussed by hand, thus lowering the alcohol concentration to 0.3 %.
- 3. All solutions were delivered by intraperitoneal (i.p.) injection, 0.3 ml/mice.

Dilution and dynamization

0.4 ml EtOH 30% + 39.6 ml H₂0 \rightarrow shaking \rightarrow 40 ml EtOH 0.3%

0.4 ml Buspirone + 39.6 ml H₂0 → shaking → 40 ml Buspirone 50mg/kg in EtOH 30% 5mg/kg in EtOH 0.3%

All solutions were coded by people not involved in the research

22.10.2008

Placebo (Control) = same hydro-alchoolic solution (0.3% EtOH)

Allopathic drug
= Buspirone or Diazepam
in the same hydroalchoolic solution
(0.3% EtOH)

Medicinale	Numero originale	Lettera CODIFICATA (a sorte tra A, B, C, D,E,F,G,H)
Gels 4CH:	N.1	•••••
Gels 5CH:	N.2	•••••
Gels 7CH:	N.3	•••••
Gels 9CH:	N.4	•••••
Gels 30CH:	N.5	•••••
Placebo Non Dinami	zzato: N.6	•••••
Placebo Non Dinami	zzato: N.7	•••••
Buspirone 0.5 mg/m	l N.8	•••••
I codici sono inseriti custodia a:	in una busta chiusa e sig	illata che è consegnata in
	••••••	
Firma (leggibile) di c	hi ha effettuato la codifi	ca:

Schema per la codifica delle provette con i medicinali

RANDOMIZATION of mice in the cages and rack

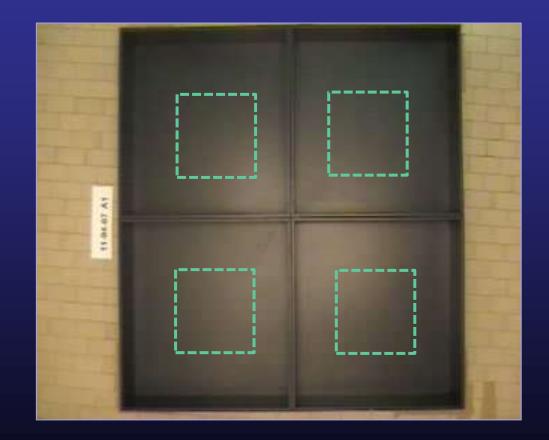
Albino CD1
Charles River Lab.

8 groups(6 treatments2 placebo control)

2 randomised animals x cage

4 cages x group

Experiments approved by ethical committee No pain, no artificial stress


Open-Field ethological test

(anxiety-like response due to conflict between tendency to exploration and aversion to open space)

Main parameters:

- →Total distance in 10 min. ("Locomotion")
- →% Time in central area
- → Distance in centre

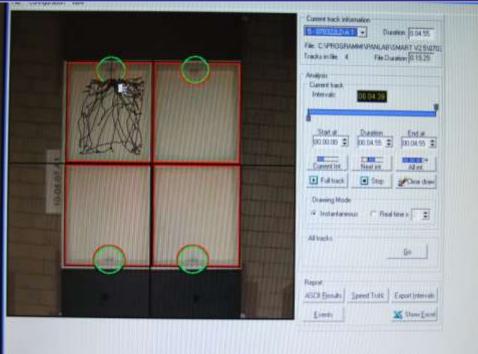
Experiments approved by ethical committee No pain, no artificial stress

Light-Dark ethological test

(anxiety-like response due to conflict between tendency to exploration and aversion to light and to be alone in open space)

Main parameters:

- →% Time in Light area
- → N. of transitions



Experiments approved by ethical committee No pain, no artificial stress

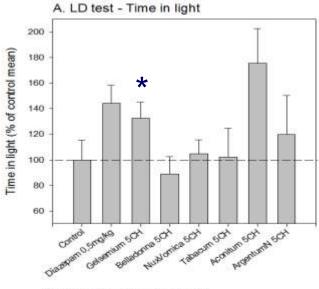
VIDEO-TRACKING AND AUTOMATIC CALCULATION OF BEHAVIOURAL SCORES

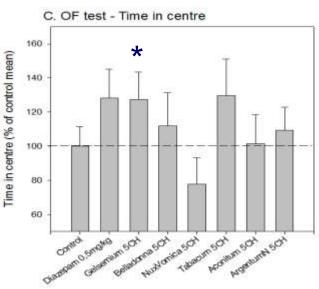
Tracking and Analysis with Smart software (Panlab Instruments)

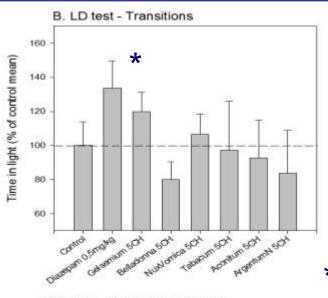
Laboratory models of high dilutiondynamization effects: Rodent models of anxiety

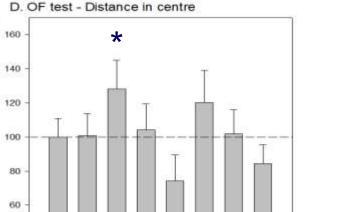
Paolo Bellavite, University of Verona

- 1. Introduction and literature review
- 2. Materials and Methods


The figures are downloadable at: www.paolobellavite.it




SCREENING TEST OF HOMEOPATHIC REMEDIES ON MICE BEHAVIOURAL MODELS (Liga Conference 2008)


Distance traveled in centre (% of control mean)

gelsemium.s

Calegorium 5 CM

Que adorna S.Ch.

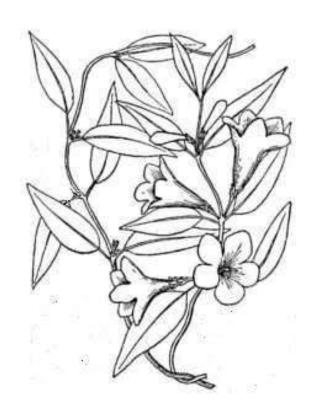
Augusta SCH

Tabacumscon

ACOMBUMICON Argentum H.S.CH

amplen O snake

Gelsemium sempervirens


CAROLINA-JESSAMINE Gelsemium sempervirens (L.) dit. f. Logania Family

Gelsemine Molecular Weight: 322,41)

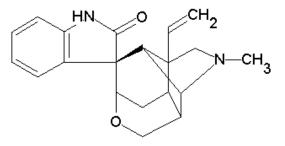
Sempervirine Molecular Weight: 335,36)

Gelsemium sempervirens

TRADITIONAL MATERIA MEDICA

Repertorial Materia Medica: Result of search by index in all repertories: [root:WALK] AND [root:AMEL]

- ✓ MIND ANXIETY walking air, in open amel. 7
- ✓ MIND ANXIETY walking amel. 8
- √ MIND WALKING air; in the open amel. 20
- ✓ GENERALS WALKING air; in open amel. 135
- ✓ GENERALS WALKING rapidly amel. 19
- ✓ GENERALS WALKING slowly amel. 15


Materia Medica (Boenninghausen, Murphy):

- **✓ MIND: FEELING AS IN DANGER OF FALLING**
- ✓ MIND: DREAD/DESIRE OF BEING ALONE
- **✓ MIND: IMPATIENT AND IRRITABLE**
- **✓ MIND: NERVOUS DREAD OF APPEARING IN PUBLIC**

Drug analysis

Fax regu de : 8472164223 50.KUN 80 rue de la Libé:ation F - 69110 SAINTE- OY-LES-LYON		-05-08 09:42 Pg: 1 ERTIFICAT D'ANALYSE N° LIMS : 62477
GELSEM	IUM SEMPERVIRENS TM GOB9.2TMGT1E	
Date de fabrication 31 Mars 200	Quantité 173.1 L	N° de Lot TH0082
Date de contri·le 26 Avril 20(4	и°	de contrôle C04046134
Partie Utilisée : Organes soute Description : Liquide jaune amb		
A) ALYSES	SPECIFICATIONS	RESULTATS
Aralyses Caracteres Couleur	SPECIFICATIONS	RESULTATS conforme
CARACTERES	conforme	
CARACTERES Couleur IDENTIFICATION	conforme	conforme

Gelsemine 0.021% in MT

Gelsemium 9CH: 10^{-22} Mol/L ~ 1 molecule/mouse! (10,000,000,000,000,000) times less than in allopathic drug)

Gelsemium s. and mice behavioural responses (First series of studies: ECAM-J. 2009)

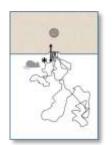
eCAM Advance Access published September 14, 2009

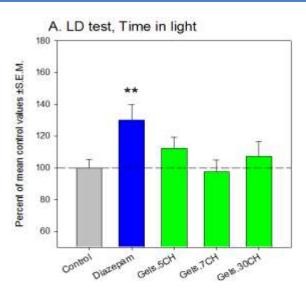
eCAM 2009; Page 1 of 10 doi:10.1093/ecam/nep139

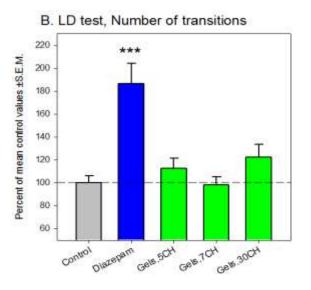
Original Article

Homeopathic Doses of Gelsemium sempervirens Improve the Behavior of Mice in Response to Novel Environments

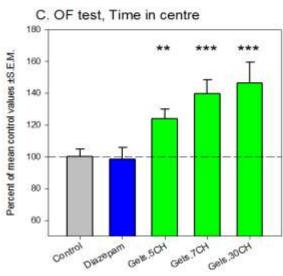
Paolo Bellavite¹, Paolo Magnani¹, Elisabetta Zanolin² and Anita Conforti³

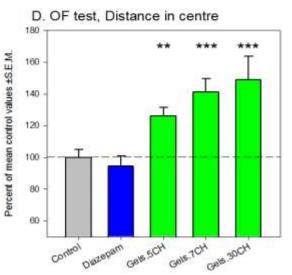

¹Department of Morphological Biomedical Sciences (Chemistry and Microscopy Section), ²Department of Medicine and Public Health (Biomedical Statistics Section) and ³Department of Medicine and Public Health (Medical Pharmacology Section), University of Verona, Verona, Italy



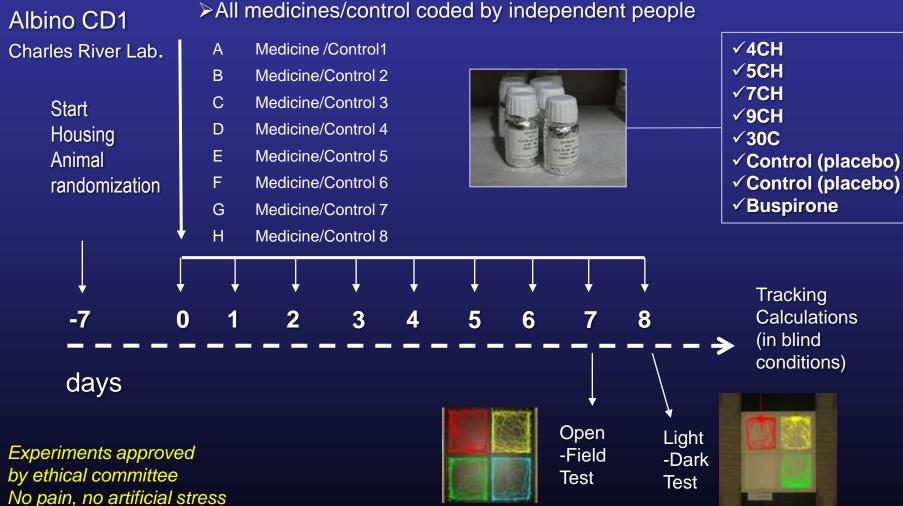


Gelsemium s. and mice behavioural responses (First series of studies: ECAM-J. 2009)





5CH= 8 exp 7CH= 3 exp 30CH= 2 exp 16 mice/exper



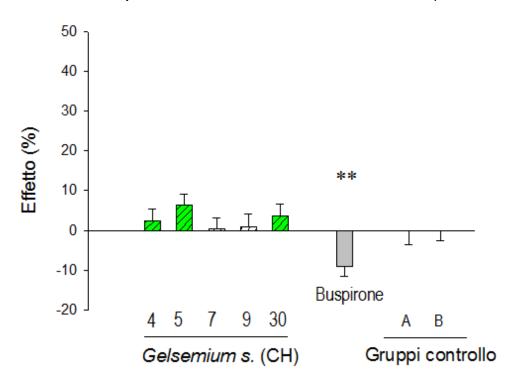
5CH= 8 exp 7CH= 3 exp 30CH= 2 exp 16 mice/exper

Scheme of the standard experiment

(2nd series with *Gelsemium s.*: dose-effect study)

- ▶8 groups of 8 animals (Harlan LAB), randomized 2 x cage
- ▶ 5 Dilutions of *Gelsemium*, 1 Buspirone and 2 Controls (placebo)

Behaviour of CD1 mice in the absence (control) and in the presence of *Gelsemium* or Buspirone (*Psychopharmacology* 2010)



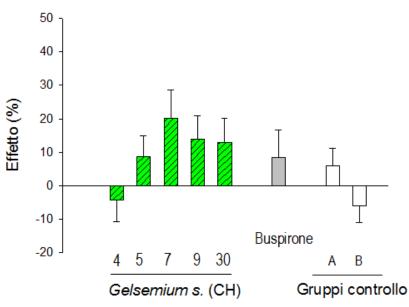
Open-Field

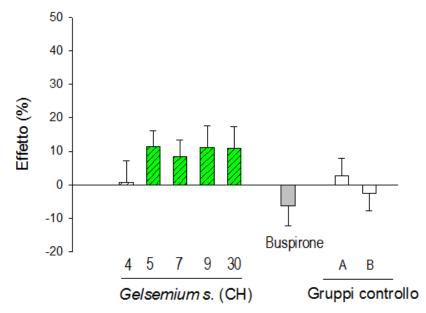
Mean effect ± SEM of 6 experiments total 48 mice/group

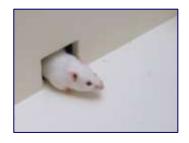
A: Open field:Total distance traveled (index of locomotion)

Global ANOVA for groups P=0.035

Behaviour of CD1 mice in the absence (control) and in the presence of *Gelsemium* or Buspirone (*Psychopharmacology* 2010)


Open-Field

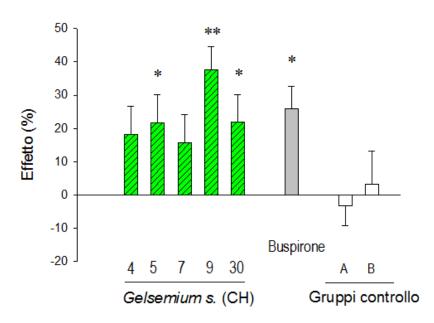

Mean effect ± SEM of 6 experiments total 48 mice/group

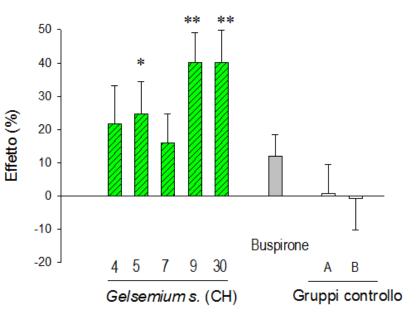

B: Global ANOVA for groups P=0.059 C: Global ANOVA for groups P=0.195

B: Open field: time spent in centre (anxyolitic-like effect)
C: Open field: distance traveled in centre

Behaviour of CD1 mice in the absence (control) and in the presence of *Gelsemium* or Buspirone (*Psychopharmacology* 2010)

Light-Dark Mean effect ± SEM of 6 experiments total 48 mice/group


D: Global ANOVA for groups P=0.0004


E: Global ANOVA for groups P=0.0002

P* <0,05 P**<0,001

D: Light-dark: time spent in light (anxyolitic-like effect)

Gelsemium s. and mice behavioural responses (Second series of studies: Psychopharmacology 2010)

Psychopharmacology (2010) 210:533–545 DOI 10.1007/s00213-010-1855-2

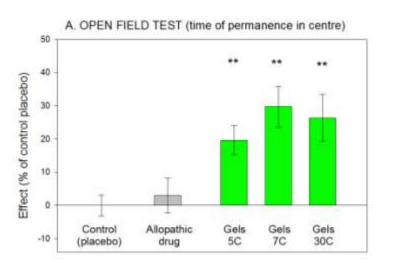
ORIGINAL INVESTIGATION

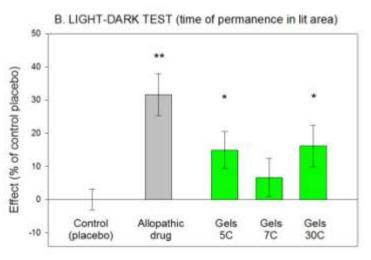
IMPACT FACTOR 3.65

Dose-effect study of *Gelsemium sempervirens* in high dilutions on anxiety-related responses in mice

Paolo Magnani · Anita Conforti · Elisabetta Zanolin · Marta Marzotto · Paolo Bellavite

Received: 10 February 2010 / Accepted: 26 March 2010

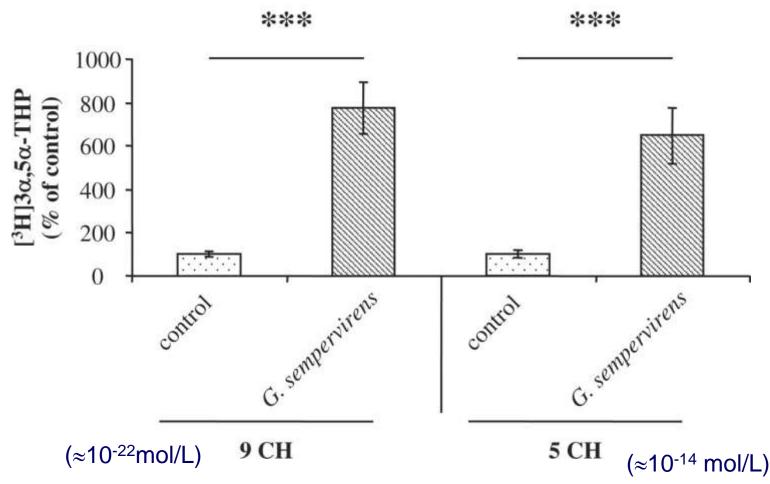

© The Author(s) 2010. This article is published with open access at Springerlink.com



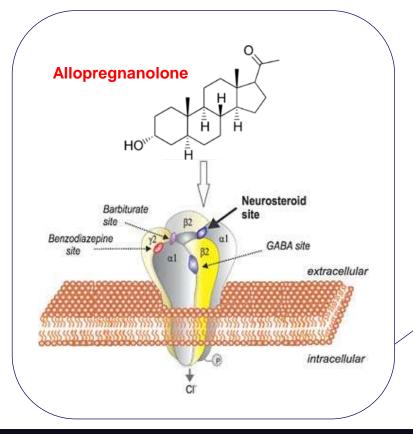
Unpublished recent results of meta-analysis of two series where 5-7-30 CH were measured

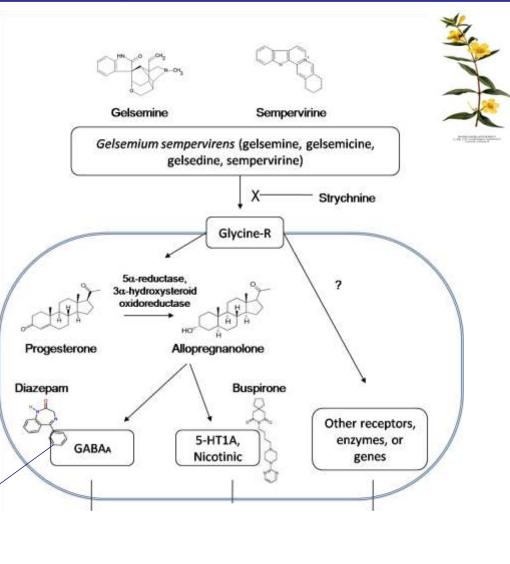
Control-placebo: 14 exper Allopathic drugs: 14 exper

Gels5CH: 14 exper Gels 7CH: 9 exper Gels 30CH: 8 exper


Gobal Anova for groups: p<0.01 in both tests Post hoc (LSD): * <0.05, ** <0.01

Neurosteroid Allopregnanolone Formation in the Spinal Cord and Limbic System

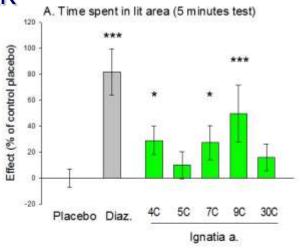

Christine Venard et al., ECAM-J (advance access online)

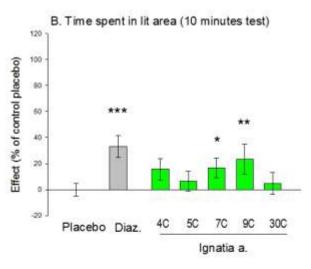


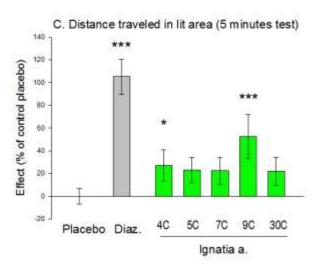
Working model of the mechanism of action of *Gelsemium sempervirens*

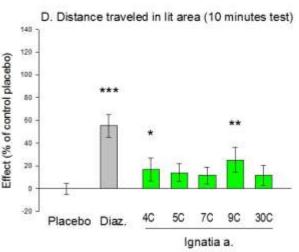
Allopregnanolone: an endogenous anxiolytic-like neurosteroid

The KEY-NOTES

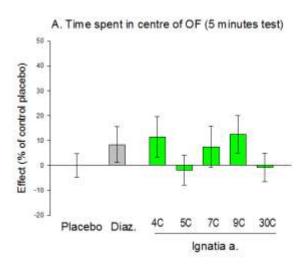

Gelsemium sempervirens improves some indexes of anxiety-like behavior significantly more than placebo in a large group of mice in rigorously blind conditions:

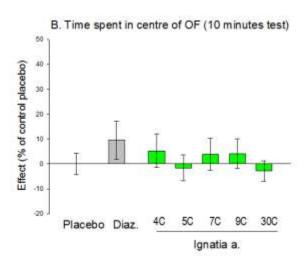

- •The *Gelsemium* effects in mice concern a subset of symptoms which have been tested in our models:
- aversion to open space
- amelioration with movement
- feeling in a danger
- aversion to light
- •9CH and 30CH potencies appear to be more active than 4CH and 5CH
- •The anxiolytic-like effects of *Gelsemium* in Open Field are quite different from those of allopathic drugs (buspirone and diazepam)
- Gelsemium has no adverse effects on locomotion nor causes sedation (an effect shown by buspirone in chronic treatment)

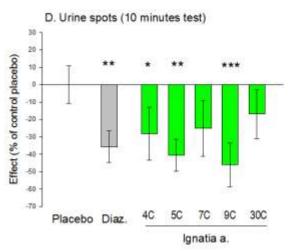


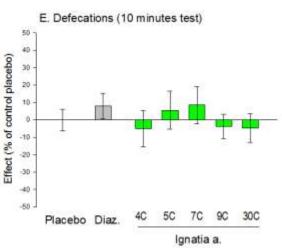

Unpublished recent results with Ignatia amara (5 experiments, 40 mice/group)

LIGHT-DARK TEST




*=p<0.1 **=p<0.05 ***=p<0.01




Unpublished recent results with Ignatia amara (5 experiments, 40 mice/group)

OPEN-FIELD TEST

*=p<0.1 **=p<0.05 ***=p<0.01

The Verona "Gelsemium" study group (2010)

